
Università degli Studi di Padova

Dipartimento di Matematica «Tullio Levi-Civita»
Corso di Laurea Magistrale in Informatica

Leveraging image metadata for multi-label
image classification

Relatore
Prof. Lamberto Ballan

Controrelatore
Prof. Elisa Ricci, Università di Trento

Tobia Tesan



This page intentionally left blank.



Abstract

In the context of multilabel image classification, the performance of visual classifiers can
be boosted by using the implicit knowledge embedded in the similarity between the social
network metadata of different images.

This approach is particularly effective for difficult images such as nonprototypical views
of common objects and for rare classes.

We build upon the model of [JBFF15], which uses image metadata nonparametrically
to generate neighbourhoods of related images according to Jaccard similiarity, then uses
a deep neural network to blend visual information from the image and its neighbours,
allowing the model to perform well even when the vocabulary of metadata changes between
training and testing.

Firstly, we propose variations on the model presented therein within the same general
framework, using RNNs in the representation learning phase and semantic embeddings in
the neighbourhood generation phase.

We perform comprehensive experiments on the NUS-WIDE dataset and show that our
model outperforms that of [JBFF15].

Furthermore, we extend the general framework enabling it to leverage metadata explic-
itly with joint models; by using semantic embeddings to map metadata to a semantic space
and decouple the parametric neural model from the low-level representation of metadata
we achieve robustness to vocabulary change between training and testing.

We propose different models operating under this new general framework; we perform
extensive experiments on NUS-WIDE with each model, characterizing their respective per-
formances and showing that they outperform other models to a varying degree.

Finally, we propose an alternative and less biased experimental protocol for studies
involving this sort of models.

3



This page intentionally left blank.



Contents

1 Introduction 9
1.1 Contribution of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15
2.1 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Classification problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Inductive bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.3 Capacity, overfitting, underfitting . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 Parametric vs nonparametric models . . . . . . . . . . . . . . . . . . . . 18

2.2 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 (Deep) feed-forward networks . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3 Regularization techniques for deep neural networks . . . . . . . . . . . 26

2.3 Image classification tasks and CNNs . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Metrics for multi-label image classification . . . . . . . . . . . . . . . . . 28

2.3.2 CNNs and Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Transfer learning and pretrained models . . . . . . . . . . . . . . . . . . 38

2.4 Distributional word representations . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Literature review 43
3.1 Metadata-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Neighbour-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Semantic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Our models 47
4.1 Neighbourhood generation and size . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Metadata semantic mappings π and distance measures δ . . . . . . . . . . . . . 53

4.3 Neural architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Visual architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Joint architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Experiments 61
5.1 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.1 Dataset and pretrained weights . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.2 Semantic mappings and distance measures . . . . . . . . . . . . . . . . 62

5.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5



5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Neural architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Variations upon the experimental protocol and future work 77

7 Conclusions 89

6



Notation

Throughout this document we use the following notation.

a ∆= b A is defined as b
a ≡ b A is syntactically equivalent to b
x(t) x at time step t/t-th element of a succession
τ Length of a discrete temporal sequence or succession

x(i) i-th element of vector ~x
D Data-generating distribution

Dtrain Training set
Dtest Test set

Dvalidation Validation set
~x A vector
x An instance
y Ground truth
ŷ A prediction
H Hypothesis space

E[x] Expected value of x
E
D
[x] Expected value of x over distribution D

E
s
[x] Expected value of x over sample s

MSEtrain Mean squared (training) error
MSEtest Mean squared (test) error

Errsample(s) Sample error
h Hypothesis, or an approximator for some f∗

θ Parameters of a model
w Weight vector or weight matrix
b Bias

σ (x) An activation function over input x
L2(p) L2 regularization
L1(p) L1 regularization

λ Regularization coefficient
η Learning rate
L Loss

prec Precision
rec Recall

prec@k Precision at k
rec@k Recall at k

O Output units
I Input units
H Hidden units
U Units
x An image x

φ (x) Visual features extracted from x

ox One-hot vector or binary vector for image x
Z = {z1, z2 . . . zm} Neighborhood

7



Zx Neighborhood for image x
δ Distance measure
π Semantic mapping
β Embedding dictionary

wnet(t) wnet representation for tag t
w2v(t) w2v representation for tag t

8



Chapter 1

Introduction

(a) Mystery image one (b) Mystery image two

Figure 1.1: Mystery images

The Oxford English Living Dictionary defines “context” as:

“The circumstances that form the setting for an event, statement, or idea, and in
terms of which it can be fully understood” [oed]

That is, humans might possibly need some circumstantial information in order to achieve
full understanding of the meaning of some sign or to correctly infer properties of an object.

Particularly, when identifying the content of an image, humans can benefit from the
context that surrounds the image.

A bicycle tire can look very much an o-ring in a picture, which is to say, there exists a
sensory gap:

Definition 1 (Sensory gap). The gap between the object in the world and the information
in a (computational) description derived from a recording of that scene, due, for example,
to clutter, occlusion... [SWS+

01]

However while a picture of a round, slick, black object can be either, seeing it in a
photograph of a car garage or of a watchmaker’s desk can help dissipate the ambiguity.

9



Even then, we might not be really sure about the meaning of the picture without some
context – is a picture of a white dove a picture of a vertebrate, of bird, of something white,
of a specific species of dove or maybe a symbol for peace – or maybe it’s a picture of
interesting-looking clouds, occluded by a passing bird?

This is the semantic gap:

Definition 2 (Semantic gap). A lack of coincidence between the information that one can
extract from the visual data and the interpretation that the same data have for a user in a
given situation. [SWS+

01]

One of the easiest forms of context to leverage in image classification is given by meta-
data embedded in the image.

Consider for example a user of a photo sharing website who is shown the picture of
figure 1.1b, or figure 1.1a, and asked to identify the object pictured.

He or she might have trouble readily identifying it.
However, if shown in the context of added metadata such as tags, such as in figure 1.3

the user might not have any trouble in understanding the subject as a bunch of pebbles.
Metadata other than tags, such as location or timestamp, might contain some implicit

knowledge to tip off the user, such as in figure 1.2 – the user can more easily understand
the image as an aerial view of a tree near the Arctic circle, in May, when the shadows are
longer.

Figure 1.2 is an example of a “non-prototypical” view of a common object, which is
ordinarily more difficult for a classifier to tackle. The prototypical, more common view of
the same object – in fact, of the same scene – is that of figure 1.4.

However, it is not always trivial to assign meaning to metadata: in either cases this relies
on the user knowing where Lapland is, or knowing the meaning of words such as “tree”,
“rocks”, “pebbles”.

Consider now a non-Chinese speaking user faced with the screen of figure 1.5 – the
available metadata might not be as useful in itself.

However, even then the user might be able to leverage it: if the user is cunning and
familiar with how photo sharing sites generally work, he or she might with some luck click
on the appropriate UI element and get to the screen of figure 1.6, i..e a gallery of images
that share a tag with that of figure 1.5.

Now it would be once more clear, by looking at them, that we’re looking at a close up
picture of a leaf.

Metadata and, particularly, metadata neighbours can be considerably effective in bridg-
ing the sensory and the semantic gap, as seen in the literature reviewed in chapter 3 and
particularly in [JBFF15], [ML12], but there is more than one way to skin this particular cat.

1.1 Contribution of this thesis

The contribution of this thesis, building upon [JBFF15], is threefold: firstly, we propose
two ways to enhance, within the same genral framework, the performance of the model
described therein, using RNNs and semantic embeddings.

Secondly, we propose a new general framework for joint models that leverages metadata
explicitly rather than implicitly and we propose a way to achieve, nevertheless, robustness

10



DSCN56789.JPG

Location: Lapland
Taken: May 10 2018, 16:00

Tags: Tree, Snow, Winter, Lappi

Figure 1.2: Mystery image one, plus metadata

DSCN562382.JPG

Tags: Pebbles, Rocks, River bed
Taken: Oct 11 2017, 12:00

Figure 1.3: Mystery image two, plus metadata

to vocabulary change between training and testing through the use of semantic embed-
dings.

We describe a selection of models that implement it; we characterize the performance

11



Figure 1.4: Prototypical view of a tree; same scene as figure 1.1a, different perspective

DSCN9999233.JPG

Tags: 叶⼦, 树, 微距摄影
Taken: May 30 2015, 9:15

Figure 1.5: Mystery image

12



Exploring Tag: 叶⼦

Figure 1.6: A web page displaying the mystery image of figure 1.5 in the context of other
images tagged with a same tag

of all models through comprehensive experiments on the NUS-WIDE dataset.
Finally, we propose what we believe is an ideal experimental protocol to be used for this

sort of relatively new family of models.

1.2 Organization of this thesis

In chapter 2 we provide some essential background.
Section 2.1 deals with the generalities of machine learning and, specifically, (deep) neu-

ral networks.
In section 2.2 we give some background on image annotation and, particularly, the task

of multi-label object identification.
In Chapter 3 we review existing literature with a focus on some recent work.
In Chapter 4 we discuss our framework and models.
Specifically, in section 4.2 we discuss semantic mappings and distance measures we use

to identify neighbourhoods; in section 4.3 we discuss neural achitectures.
In chapter 5 we present the experiments we carried out; in section 5.1 we detail the

experimental protocol used; in particular in section 5.1.1 we discuss the dataset and pre-
trained weights used; in section 5.2 we present the evaluation metrics used and give upper
bounds on our dataset; finally, we present and extensively discuss the experimental results
in section 5.3.

We discuss alternate experimental protocols in chapter 6.
We draw our conclusions in chapter 7.

13



This page intentionally left blank.



Chapter 2

Background

2.1 Machine Learning

Machine learning is a particularly effective technique when [Mit97] large sets of data are
available that contain implicit regularities that can be discovered automatically, explicit al-
gorithmic knowledge is lacking, and/or there is a need for dynamic adaptation to changing
conditions.

One general definition of machine learning is found in [Mit97]:

Definition 3. A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T , as measured
by P, improves with experience E.

Machine learning algorithms can be broadly organized in the following taxa [GBC16]:

• Supervised learning algorithms, which experience a dataset where every example is
associated with a label or target value

• Unsupervised learning algorithms, which experience a dataset containing many fea-
tures, then learn useful properties of the structure of this dataset.

• Reinforcement learning algorithms, which interact with an environment rather than
passively experiencing a dataset.

2.1.1 Classification problems

The task of classification, along with the closely related one of regression, is among the
most popular supervised learning tasks.

Consider a distribution D of pairs of instances and labels 〈x, y〉 ∈ (Rn × [0, 1]) – for
example a vector of vital parameters and a label signifying the presence or absence of a
certain disease in patients.

In other words, suppose there exists a relation 1 R s.t.

R(x, y)

1Not necessarily univalent: when collecting data in the real world it is possible that two patients have the
same exact vital parameters but end up with different diagnoses

15



for all 〈x, y〉 in D.
Suppose we have access to a finite set Dtrain ⊆ D of discrete examples 〈xi, yi〉, called

training set, that is ideally representative of D, in which the right-hand side of the pair is
called ground truth.

Classification amounts to generalizing from said examples in order to derive (learn) a
function

h : Rn → {0, 1}

called “hypothesis”, chosen from an hypothesis space

H ⊆ (Rn → {0, 1})

such that it approximates R.
The ability to perform well on previously unobserved inputs is called “generalization”.
In multiclass classification, we have that 〈x(i), y(i)〉 ∈ (Rn × [0, 1, . . . k]) and in multilabel

classification we have 〈x(i), y(i)〉 ∈ (Rn × [0, 1]k) – it can either be the case that the instance
belongs to a given class or not.

2.1.2 Inductive bias

Generalizing beyond the training examples mandates that the machine learning system con-
tains some form of inductive bias – i.e. some further assumption for choosing a generaliza-
tion over another.

Without such assumptions, it is impossible to go beyond trivial rote learning of the
training examples [Mit97]; such assumptions are dependent on our knowledge of the task
and the domain.

Intuitively, the popular connect-the-dots puzzle is solved by making the assumption that
the dots are to be connected with straight lines: one could imagine a variation upon the
classic puzzle in which dots are to be connected with parabolas (three by three, of course)
or with a single spiral, or more dots.

Without such assumptions, the solver would not be able to do anything with the dots.
Note, moreover, that according to the no free lunch theorem [WM97], no machine

learning algorithm is universally any better than any other: averaged over all possible data-
generating distributions, every classification algorithm has the same average performance
when classifying previously unobserved instances.

We will therefore seek an inductive bias that is practically effective for our task, domain
and dataset.

Inductive bias imposes a representation for the learner which allows some degrees of
freedom and amounts to choosing the set of functions that it can possibly learn, called the
hypothesis space.

2.1.3 Capacity, overfitting, underfitting

Definition 4 (Generalization error). Generalization error of a classifier h is the expected
value of its error on a new input x extracted from the distribution of possible inputs D

ErrD(h)
∆
= E
〈x,y〉∈D

[δ(y,h(x))]

16



where

δ(y,y ′) =

{
1 if y = y ′

0 otherwise

It is also known as test error.
One way of approximating it is by applying the classifier over a test set Dtest ⊆ D of

examples collected separately from the training set and computing the mean square error
[GBC16]:

MSEtest
∆
=
1

2

∑
〈x,y〉∈Dtest

(y− h(x))2 (2.1)

This measure is a form of sample error in that it is defined over a specific set of examples
instead of a distribution [Mit97].

Assume now we we have a training set Dtrain and a test set extracted from the space of
examples in an i.i.d. fashion.

Similarly, we can approximate

E
x∈Dtrain

[δ(y,h(x))]

with

MSEtest
∆
=
1

2

∑
〈x,y〉∈Dtest

(y− h(x))2 (2.2)

The expected error of an arbitrary classifier h over each set is exactly the same.

ErrDtesth = ErrDtrainh

However, if the classifier is not “arbitrary” but instead is refined in order to minimize
the error over Dtrain, so it must be that the expected error over the test set is bounded below
by the expected value of the error on the training set:

ErrDtesth > ErrDtrainh (2.3)

And also

ErrDh > ErrDtrainh (2.4)

Because of inequality equation (2.4), in order to minimize ErrDh, it is desirable

1. To make ErrDtrainh – or its approximant, e.g. ErrDtrainh – small

2. To make the bound tight

When the first condition is not met, we have underfitting; when the second condition is
not met, we have overfitting.

More formally2:

2Note that underfitting is not symmetrical to this definition: it is what happens when ErrDtrainh can’t be
made sufficiently small.

17



Definition 5 (Overfitting). Given a hypotesis space H a hypohesis h ∈ H is said to overfit
the data iff ∃ h ′ ∈ H such that

Errsample(h) < Errsample(h
′)

but
ErrD(h) > ErrD(h ′)

i.e. h has a smaller error over the training examples, but h ′ has a smaller error over the
entire distribution of instances [Mit97].

Both are a function of a model’s capacity: a model with low capacity might tend to
underfit; a model with high capacity might overfit unless precautions are taken.

One way to control the capacity of a learning algorithm is by choosing its hypothesis
space, i.e. the set of functions that the learning algorithm is allowed to select as a the
solution [GBC16].

2.1.4 Parametric vs nonparametric models

Definition 6 (Parametric learning). A learning model that summarizes data with a set of
parameters of fixed size – i.e. learns a function described by a parameter vector whose size
is finite and fixed – is called a parametric model [GBC16] [RN16].

Neural Networks and Support Vector Machines are paradigmatic examples of paramet-
ric models.

Those models that are not parametric are called instance-based models or simply “non-
parametric models” [RN16].

One example of such an algorithm is nearest neighbor regression. A nearest neighbor
regression model simply stores the instances from the training set and, when queried, it
will look up the nearest entry in the training set and return the associated regression target.

Their complexity is therefore a function of the training set size [GBC16].

Hyperparameter optimization

Sometimes we wish to tune some higher-order parameters or hyperparameters, that control
the behaviour and performance of the learning algorithm but are not part of the learned
model.

We shall therefore wish to equip ourselves with a third set, called “validation set” that
will enable us to compare different models and choices of hyperparameters in an unbiased
way.

2.2 Artificial neural networks

One very popular family of machine learning models is that of Artificial Neural Networks,
or ANNs.

ANNs are vaguely inspired by (a 1950s understanding of) the animal brain and are
especially suited to classification and regression tasks with noisy sampled data, such as
photographs and videos.

18



c

x(1)

x(2)

x(n)

...

b

w(1)

w(2)

w(n)

h(x; θ)

Figure 2.1: Perceptron

The most ubiquitous sort of ANN is based on the perceptron, which constitutes in itself
the simplest case of an artificial neural network.

The computational activity of a single perceptron amounts to computing

h(x; θ) = f(x;w, b) = σ
(
xTw+ b

)
(2.5)

for some x ∈ Rn and some w ∈ Rn, b ∈ R and an activation function σ : R→ R.
Traditionally – and for our purposes until section 2.2.1 – , let σ = sign.
This is laid out in figure 2.1.
Training the perceptron means choosing “adequate” values for the learnable parameters

θ = 〈w, b〉 in order to best approximate D.

Gradient descent

Gradient-based optimization techniques are by far the most common way to obtain θ.
The idea behind applying gradient-based optimization to neural networks is to use it to

update the weights in a way such that they move in the direction that minimizes a given
loss function L which we expect to be a good predictor of ErrD(h(x, θ)).

In general, to find a choice of vector ~x that minimizes function f(~x) for an arbitrary
function f, gradient descent algorithms iteratively compute

x(i) := ~x(i−1) − η∇f(~x(i−1))

where

∇f(~x) ∆=
[
δf

δx(1)
,
δf

δx(2)
, . . .

δf

δx(n)

]
By using gradient descent to minimize the loss function L we then maximize the per-

formance of our model – or minimizing the expected error.
L often is related or is a function of the Errsample(h(x, θ)), but may also include additional

terms, such as regularization terms, which we discuss in section 2.2.3 and serve to limit the
capacity of the model and therefore contrast overfitting.

Since gradient descent “chases” the direction of the gradient, it has the potential of
getting “stuck” in critical points in which the gradient is 0-valued, such as local minima,
local maxima or saddle points [GBC16].

In practice, gradient descent empirically seems to be able to avoid local maxima and es-
cape saddle points in many cases [GBC16]; while local minima constitute an open research

19



x1 x2 x3
x

y

f(x)

Figure 2.2: Types of critical points: x1 is a local minimum, x2 is a saddle point, x3 is a
saddle point

area, recent findings suggest that most local minima in practical networks have more often
than not an acceptably low value, and are thus not the most likely cause of difficulties in
optimization [GBC16]. There are several families of gradient descent algorithms that afford
different trade-offs between the accuracy of the parameter update and the time it takes to
perform an update.

1. Batch gradient descent computes the gradient of the cost function w.r.t. to the param-
eters for the entire training dataset, as seen in listing 1. it is therefore expensive in
terms of space and time.

The error measure is arbitrary, but a popular choice [Mit97] is to define Err(θ) to be the
MSE as defined in equation (2.2), possibly with the addition of regularization terms.

2. Stochastic gradient descent, as seen in listing 2, approximates batch gradient descent
by performing a parameter update for each training example. Stochastic gradient
descent has a tendency to fluctuate, which can help with local minima, but ultimately
can complicate convergence.

3. Mini-batch gradient descent is a compromise between the two; it performs an update
for every mini-batch of n training examples. This reduces fluctuation and can lead to
more stable convergence; it lends itself particularly well to implementation on GPUs
and CPUs with vector instruction sets such as Intel AVX.

2.2.1 (Deep) feed-forward networks

Perceptrons can be composed together as units to form larger neural networks, thus in-
creasing the achievable computational power (in a computability theory sense).

Definition 7 (Neural network architecture). The overall structure of a neural networks,
given by how many units make it up and how they are interconnected, is called “architec-
ture”.

The architecture of a network is described by a directed graph such as that of figure 2.3,
in which there is one node for every unit and one edge for every connection between the
output of a unit and the input of another.

20



Gradient-Descent(Dtrain,η)

1 // θ
∆
=
[
w b

]
∈ Rn+1 are the weight vectors to be optimized

2 // Dtrain are the training examples
3 // η is the learning rate
4 for i = 1 to n+ 1

5 θ(i) := random(0, 1) ∗ ε
6 while Err(θ) > ε // Variation: until a fixed number of iterations is reached
7 // One epoch
8 for i = 1 to n
9 ∆θ(i) := 0

10 for each 〈x, y〉 ∈ Dtrain
11 o := σ (wx+ b)
12 for i = 1 to n
13 ∆w(i) := ∆w(i) + η(y− o)xi
14 ∆b := ∆b + η(y− o)
15 // ∆θ ≈ −η∇θ; see e.g. [Mit97] for proof
16 for i = 1 to n
17 θ(i) := θ(i) +∆θ(i)
18 return θ

Listing 1: Gradient descent

Stochastic-Gradient-Descent(Dtrain,η)

1 // θ
∆
=
[
w b

]
∈ Rn+1 are the weight vectors to be optimized

2 // Dtrain are the training examples
3 // η is the learning rate
4 for i = 1 to n
5 θ(i) := random(0, 1) ∗ ε
6 while Err(θ) > ε // Variation: until a fixed number of iterations is reached
7 // One epoch
8 for each 〈x, y〉 ∈ Dtrain
9 o := σ (wx+ b)

10 for i = 1 to n
11 w(i) := w(i) + η(y− o)xi
12 b := b + η(y− o)
13 return θ

Listing 2: Stochastic gradient descent

21



x f1(x) f1 ◦ f2(x) (f1 ◦ f2 ◦ f3)(x) = ŷ

input layer

hidden layer

output layer

Figure 2.3: A multilayer perceptron

f1

f2

f3

x ŷ

Figure 2.4: Alternate graphical representation of the network of figure 2.3

Commonly, networks are organized into groups called “layers” such that the output of
each layer is a function of the previous one’s activation.

Consider for example figure 2.3: it is the case that

ŷ = (f3 ◦ f2 ◦ f1)(x) (2.6)

Where f1...3 is the function Rn → Rm computed by each layer.
Often in literature architectures are described graphically simply by their layers, such

as in figure 2.4.
The most straightforward architecture is the “deep feedforward network” or multilayer

perceptron.
Unlike recurrent networks, discussed in section 2.2.2 there is no feedback connections

in this sort of network and, therefore, the output of every layer is defined in terms of the
output yielded by preceding layer or, less commonly (e.g. [HZRS16]) of more than one
previous layer.

In this sense, the structure of a feedforward network can be thought of as a directed
acyclyc graph.

The layers in an MLP are further subdivided into input layer, hidden layers (of which
figure 2.3 only has one) and output layer.

22



MLPs almost always incorporate units with non-linear activation function σ, that en-
dow them with the ability, given enough hidden units, to approximate the set of functions
described in the universal approximation theorem, which amount to the set of continuous
functions on a closed and bounded subset of Rn [GBC16].

In contrast, the simple perceptron equipped with a linear activation function famously
cannot compute the XOR function [MP72].

Note, however, that the universal approximation theorem says nothing about the possi-
bility of learning those functions: it might very well be the case that any training algorithm
could fail to converge to the appropriate weights.

Backpropagation

When training a multilayer network, the gradient descent algorithm of listing 1 does not
suffice.

The most glaring difference wrt the context of the single-neuron network of figure 2.1 is
that Dtrain provides target values y only for network outputs, so the the error of the hidden
units must be imputed somehow: this is the credit assignment problem.

The hypothesis space of a multilayer perceptron with several output units O is larger
than a perceptron with a single output and defined over all possible weight values for all
units; the error is defined as 3:

Err(θ) =
1

2

∑
d=〈x,y〉∈Dtrain

∑
i

(y(i) − h(()x; θ)i)2

The algorithm presented in listing 3 optimizes the parameters θ wrt the squared error
between the output values of the network and the target values for these outputs.

One complete pass over the training set – i.e. one iteration of the outermost loop – is
called an “epoch”.

An in-depth explanation and proof can be found in [Mit97]; an alternative one, based
on a graph-theoretical intuition, can be found in [Roj96] that also applies to architectures
other than the MLP.

2.2.2 Recurrent neural networks

Unlike the feed-forward networks described in section 2.2.1, RNNs allow for recurrent
connections.

Which is to say, if the network is represented as a graph in which each unit corresponds
to a node which has a directed edge towards any other unit its output is a function of, this
graph is no longer a DAG but allows for cycles or loops.

The presence of feedback loops makes the network stateful, and its output ŷ(t) at time
step t is a function of the network’s input x(t) at time step t and its hidden interal state at
time step t− 1.

3Or, equivalently [Mit97]:

Err(θ) =
1

2

∑
d=〈x,y〉∈Dtrain

∑
i

(y(i) − ŷ(i))
2

where o(i) is the output of the i-th output unit.

23



Back-Propagation(Dtrain,O,H, I)

1 // I = {i1 . . . im} are the input units
2 // O = {o1 . . . oo} are the output units
3 // H = {h1 . . . hp} are the hidden units
4 // θu =

[
wu bu

]
is the weight vector associated with each unit

5 // We denote the function of each unit u ∈ U∪O as fu(~x; θu)
6 // Dtrain are the training examples
7 // δu is error term for the u ∈ I∪O, which serves to impute u’s share of the error
8 wu := random(0, 1) · ε ∀u ∈ O∪H
9 while Err(θ) > ε

10 // One epoch
11 for each 〈x, y〉 ∈ Dtrain
12 // Phase 1: Propagate forward by computing the output for each unit
13 for i = 1 to m
14 i(i) := x(i)
15 for i = 1 to p
16 h(i) := fh(i)

(i(1) . . . i(m); θh(i)
)

17 for i = 1 to o
18 o(i) := fo(i)

(h(1) . . . h(m); θo(i)
)

19 // Phase 2: Propagate and impute error backwards
20 for i = 1 to m
21 // For each output unit o, compute its error term δo
22 δo(i)

:= (o(i)(1− o(i)))(y(i) − o(i))

23 for j = 1 to p
24 // For each hidden unit h, compute its error term δh
25 δh(j)

:= (o(j)(1− o(j)))
∑o
k=1(w(k,j)δo(k)

)

26 // w(k,j) ∈ R is the j-th element of the weight vector for unit k
27 for each w(i,j)
28 wij := wij +∆wij
29 bij := bij +∆bij
30 return θ

where

∆wij = ηδixji

∆bij = ηδi

Listing 3: Backpropagation for a three-layer network [Mit97]

24



This results in the computing capability of RNNs to be broadened –in fact, it has been
shown that recursive neural networks are Turing-complete [DS02], [SS95].

In practice, RNNs are often used and particularly well-suited for time-series and data
with an otherwise sequence: the “past” sequential information is preserved in the network’s
current state.

Consider the network of figure figure 2.5a.
To simplify notation, we will now refer to the weights of whole layers as weight matrices,

instead of single units, after [GBC16]; moreover, only for for the remainder of this section,
will draw entire layers as nodes in a graph, to reduce visual clutter.

Let u,w and v be weight matrices. The network output ŷ(t) any given time step t is then

a(t) = ux(t) +wh(t−1) + b (2.7)

h(t) = σh(a
(t)) (2.8)

o(t) = c+ vh(t) (2.9)

σh is an activation function; tanh is a popular choice.
Do note that if the network were connected as in figure 2.5b, it would be strictly less

powerful (i.e. not Turing-complete) [GBC16].
Such a network can be trained to predict a sequence ŷ(1), ŷ(2) . . . ŷ(τ) of τ output vectors

(of which only a subsequence ŷ(m) . . . ŷ(τ) may actually be of interest) as a function of an
input sequence x(1), x(2), . . . x(τ).

Backpropagation through time

Computing the error gradient through a recurrent neural network implies applying back-
propagation to an unrolled version of the network, as in figure 2.7, with one “replica” for
each element of the training sequence (or time step).

Gradients obtained by back-propagation may then be used with any general-purpose
gradient- based techniques to train an RNN.

Let τ be the length of a training instance; then the runtime is O(τ) – this cannot be
reduced by parallelization because the forward propagation graph is inherently sequential
– as is the memory cost [GBC16].

The back-propagation algorithm applied to the unrolled graph is called back-propagation
through time (BPTT).

The unrolled graph of figure 2.7 has a weight vector W shared across multiple connec-
tions that feed into another. equation (2.8) implies that in figure 2.7

h(t) = ux(t) +w(ux(t−1) +w(ux(t−2) +w(. . .)))

and by left distributivity

h(t) = ux(t) +w(ux(t−1)) +w2(ux(t−2)) + . . .+w(τ)(v(x))

Those w(1) . . .w(τ) terms with large exponents mean that, depending on the value of w
the gradient can get extremely small or extremely large, which makes the training respec-
tively extremely slow to converge or highly unstable.

This is known as the vanishing resp. exploding gradient problem.

25



ŷ

x

h w

u

v

(a) A recurrent neural network

ŷ

x

h

wu

v

(b) A strictly less powerful (“bad”!) recurrent
neural network

Do note that this is a problem with the training process, not with the representational
capacity of the network.

Gated RNNs, such as LSTM and leaky units have been developed to counter the van-
ishing gradient problem [GBC16].

At the core of LSTM is the notion of different neural networks acting as gates that,
depending on context, dynamically control the weight of the recurrent loop, with the effect
of selectively adding or removing information from the cell state.

Recently GRUs have emerged [CVMG+
14] that afford most of the same advanges while

being easier to train due to a lower number of parameters.
Gated units have been found extremely successful and have achieved widespread pop-

ularity for different applications [GBC16].
Clipping [PMB13] has been proposed as another technique to control the vanishing and

exploding gradient problem.
At the most basic level, a pre-determined gradient threshold is introduced; then, gradi-

ents whose norm exceeds this threshold are “clipped” to match it; several variations on this
basic technique exist.

2.2.3 Regularization techniques for deep neural networks

Dropout has relatively recently been proposed as a technique to counter overfitting [SHK+
14].

At the core is the observation that with limited training data, neurons will co-adapt to learn
complex relationships that are entirely the result of sampling noise; randomly turning off
select neurons during training amounts to sampling from a number of “subnetworks”, pre-
venting coadaptation. The result is shown graphically in figure 2.6.

Adding a regularization term to the loss function L that imposes a penalty on large
weights is a popular way to control overfitting; it has philosophical implications that go
back to Occam’s razor.

L1 and L2-regularization are popular; they both amount to adding to the loss function a
coefficient, multiplied by some λ constant.

In L1 regularization, we add λL2(Θ), where L2(Θ)
∆
= 1
2
‖w‖22, whereas in L2 regularization

L1(Θ) = ‖w‖1.
L1 regularization has a tendency to remove some dimensions altogether and is thus

useful for feature selection.

26



(a) Without dropout (b) With dropout

Figure 2.6: Features learned on MNIST with one hidden layer autoencoders having 256

rectified linear units, with and without dropout. Image reproduced from [SHK+
14]

ŷ(t)

x(t)

h(t) w

u

v

ŷ(t−1)

x(t−1)

h(t−1) w

ŷ(1)

x(1)

h(1)

u

v

Figure 2.7: Unrolled RNN of figure 2.5a

27



2.3 Image classification tasks and CNNs

Image classification is the task of assigning an input image one label from a fixed set of
categories or, equivalently, the task of categorizing images into one of several predefined
classes.

Image classification is one of the core problems in the field of computer vision: it has a
large variety of practical applications and many seemingly distinct computer vision tasks
(such as object detection, segmentation) can be reduced to image classification [cs219].

Challenges in image classification include viewpoint variation, scale variation, deforma-
tion, occlusion, clutter and intraclass variation [cs219].

Clearly, the task of image classification can be easily cast as a possibly multi-class or
multi-label classification problem: we will take a special interest in CNNs for image classi-
fication, which we will delve into in in section 2.3.2 and which are a form of feed-forward
multi-layer neural networks.

We shall first discuss the more general problem of evaluating an image classifier’s per-
formance; we will limit ourselves to multi-label classification.

2.3.1 Metrics for multi-label image classification

Confusion matrix Recall that in a multi-label classification problem, given x, we wish to
predict, with a function h, y in pairs in

〈x, y〉 ∈ (Rn × [0, 1]m)

drawn from a distribution D.
Suppose, then, that we learn

h : Rn → {0, 1}m

For each instance x in a pair 〈x, y〉, our classifier will then yield an m-dimensional vector
ŷ in which each entry signifies the predicted presence or absence of a given label – in other
words, our classifier can be thought of as a battery of m binary classifiers.

There are then 4 possible outcomes for every i-th label:

1. y(i) = ŷ(i) = 1. This outcome is called a true positive.

2. y(i) = ŷ(i) = 0. This outcome is called a true negative.

3. y(i) = 0∧ ŷ(i) = 1. This is called a false positive, also known as “type I error”.

4. y(i) = 1∧ ŷ(i) = 0. This is called a false negative, also known as “type II error”.

This is depicted graphically in figure 2.8.
The 4× 4 confusion matrix for each instance (resp. label) is obtained by counting the

number of labels (resp. instance) for each outcome.
An example is found in table 2.1.

28



x y ŷ outcome
1 1 1 TP
2 0 0 TN
3 1 1 TP
4 1 0 FN
5 0 1 FP
6 1 1 TP
7 0 1 FP
8 0 0 TN

(a) Classification results

pos neg
true 3 2

false 2 1

(b) Confusion matrix for table 2.1a

Table 2.1: Computing the confusion matrix: an example

False negatives

False negatives

True positives

True negatives

Instances
y = 1 ŷ = 1

y = ŷ = 0

Figure 2.8: True positive, false positives, true negatives and false negatives

29



Precision and recall

From the confusion matrix we can synthesize a few useful metrics.
Let p be a pair 〈y, ŷ〉 of a ground truth vector y for an instance and a predicted vector ŷ.
Let then TP(p),FP(p),FN(p),TN(p) be respectively the number of true positives, false

positives, true negatives, false negatives in p, i.e:

TP(〈y, ŷ〉) = |{i : y(i) · ŷ(i) = 1}|

FP(〈y, ŷ〉) = |{i : ŷ(i) − y(i) = 1}|

TN(〈y, ŷ〉) = |{i : y(i) · ŷ(i) = 0}|

FN(〈y, ŷ〉) = |{i : y(i) − ŷ(i) = 1}|

Precision intuitively indicates how trustworthy a positive prediction is; it is defined as:

Definition 8 (Precision).

prec(p)
∆
=

TP(p)

TP(p) + FN(p)

Notice that it is not defined when the set of positive instances in a given set is the empty
set.

Precision can be interpreted [MRS08] as:

P(positive instance | positive prediction)

Conversely, recall – also known as “sensitivity” – intuitively indicates how exhaustive
positive predictions are:

Definition 9 (Recall).

rec(p)
∆
=

TP(p)

TP(p) + FP(p)

Notice that it is not defined when the number of positive predictions is zero.
Recall can be interpreted [MRS08] as:

P(positive prediction | positive instance)

A trade-off is implied between precision and recall: trivially, a classifier that always
gives a positive prediction will have a recall of 1 and a small precision ε and viceversa.

It is the “wiggle room” between these two metrics that determines the performance of
a system: an “omniscient” black box could achieve precision and recall of 1.

Suppose now, as it can easily be the case with ANNs4, that our approximator has type

f : Rn → [0, 1]m

i.e. it outputs some number E[y(i)] ∈ [0, 1] for every i-th class out of m.
Those can be interpreted as the confidence level or “degree of belief” that a given in-

stance belongs to a certain class.
What constitutes a “positive” prediction then?

4But is not necessarily the case with e.g. decision trees

30



rec

pr
ec

1

1
.5

.5

(a) A healthy-looking P/R curve
rec

pr
ec

1

1
.5

.5

(b) A less healthy-looking P/R curve

Figure 2.9: Examples of precision/recall curves

Taking a cue from the field of information retrieval we can then rank them according to
the ordering > and consider the i-th label to be a positive prediction iff it is among the top
k-ranking labels for some arbitrary k.

This is the definition of precision (symmetrically, recall) at k, written prec@k and rec@k.
It is easy to see that the larger this k is, the more we trade precision for recall – in the

limit k = m we will simply classify everything as a positive instance, achieving a recall of 1

[MRS08].
The trade-off between precision and recall as k is relaxed can be visualized in a precision-

recall curve such as those of figure 2.9: figure 2.9a shows a healthy-looking curve, in which
a reasonable trade-off between precision and recall can be achieved, as signified by the large
area under the curve.

Conversely, figure 2.9b shows an extremely unreliable classifier where good precision
can be had only with small values of k and, conversely, good recall can be had only with
large values of k which, however, results in decreased precision due to the large number of
false positives that are picked up.

Mean Average Precision

Average Precision, or AP, is a synthetic measure of the classifier’s performance on a single
prediction across all choices of k where k is a relevant label.

Let first Average Precision be defined as follows5:

5 [LUB+
16] gives the equivalent definition

iAP(x) =
1

R

m∑
j=1

rj

j
δ(x, tj)

Where rj is the number of relevant predictions (true positives) for the top scoring j results, R is the number
of relevant labels and δ(x, tj) = 1 iff label tj is relevant to x.

Therefore,

iAP(x) =
1

R

 ∑
k∈{16k6m:δ(k,x)=1}

rj

j

+

 ∑
k∈{16k6m:δ(k,x)=0}

0

 =
1

R

∑
k∈{16k6m:δ(k,x)=1}

rj

j

31



AP(p) =
1

|R|

∑
k∈R

(prec@k(p))

where again p = 〈ŷ, y〉 and R = {k : y(k) = 1, i.e. k-th label is relevant}.
This is graphically depicted in figure 2.12.
Let then S be a set of pairs p; then Mean Average Precision is:

mAP(S) =
1

|S|

∑
p∈S

AP(p)

mAP is a particularly useful metric in the absence of information about the cost or risk
of misclassifications, when it is necessary to evaluate the trade-off between different types
of classification error [EVGW+

10].

Per-image and per-label metrics

Recall that we have m labels and some number n of training instances in our dataset –
intuitively, with two dimensions there are two ways to define and compute precision and
recall, depending on whether p = 〈y, ŷ〉 is

• the pair of the vector of predicted labels and ground truth for an image instance or

• the pair of predicted images carrying a given label and ground truth

Suppose instead P = 〈Y, Ŷ〉 is a pair of n×m matrices representing ground truth and
predictions, where Yi,j = 1 if label j is relevant to image i and symmetrically Ŷ.

We define the mean per-image precision precimg (resp. the mean recall recimg) as the
performance achieved by the classifier in the former case:

precimg(P) =
1

m

m∑
j=1

TP(colj(P))

TP(colj(P)) + FP(colj(P))
∈ Rn

recimg(P) =
1

m

m∑
j=1

TP(colj(P))

TP(colj(P)) + FN(colj(P))
∈ Rn

This is depicted graphically in figure 2.10.
Symmetrically, per-label precision:

preclabel(P) =
1

n

n∑
1

TP(rowi(P))

TP(rowi(P)) + FP(rowi(P))
∈ Rm

reclabel(P) =
1

n

n∑
1

TP(rowi(P))

TP(rowi(P)) + FN(rowi(P))
∈ Rm

Where R is precisely |{1 6 k 6 m : δ(k, x) = 1}| and rj
j equals TP

TP+FP if exactly the first j predictions are
considered, that is prec@j.

Do note that average precision can be “cheated” by choosing an appropriate arbitrary ordering for the labels,
but only on a single example. The advantage would cancel out when computing mean average precision,
provided the dataset is balanced.

32



The per-image and per-label precimg@k, preclabel@k, recimg@k, recimg@k are defined simi-
larly.

Note that the per-image metrics on P are the per-label metrics on PT .
Similarly, we can also compute per-image and per-label mean average precision[LUB+

16]:

mAPimg(P) =
1

n

n∑
i=1

1

|Ji|

∑
k∈Ji

precimg@k(rowi(P))︸ ︷︷ ︸
APimg(i)

where Ji = {j : j-th label is relevant for i-th image}, and symmetrically

mAPlabel(P) =
1

m

m∑
j=1

1

|Ij|

∑
k∈Ij

preclabel@k(colj(P))︸ ︷︷ ︸
APlabel(j)

Since mAPimg is averaged over images, each test image contributes equally to mAPimg,
as opposed to mAPlabel, where each label contributes equally.

mAPimg is biased toward frequent labels, while mAPlabel can be easily affected by the
performance of rare labels [LUB+

16].

33



1 0 1

1 0 0 1

1

0 0 1

1 0 1 1

1

0 0 1

1 0 0 1

0

1 0 11

0 0 11

0 0 10

predictions

1 0 0 1

1 0 1 1

1 0 0 1

ground truth

TP+ FP = 3

TP = 2

TP+ FP = 2

TP = 1

TP+ FP = 1

TP = 1

prec = 2
3

prec = 1
2

prec = 1
1

Mean precimg = 0.72

h(x(1))

h(x(2))

h(x(3))

y(1)

y(2)

y(3)

l1 l3 l4l2

Figure 2.10: Computing per-image mean precision; transpose for per-label mean precision

1 0 11

1 0 11

0 1 11

scores

E[y(1)]

E[y(2)]

E[y(3)]

.2 .1 .9.7

.3 .1 .8.2

.2 .5 .8.4

l1 l3 l4l2 pred@3

1 0 1

1 0 0 1

1

1 0 1

1 0 1 1

1

0 1 1

1 0 0 1

1

TP+ FP = 3

TP = 2

TP+ FP = 3

TP = 2

TP+ FP = 3

TP = 1

prec@3 = 2
3

prec@3 = 2
3

prec@3 = 1
3

Mean precimg@3 = 0.56
1 0 10

1 1 10

1 0 0 1

ground truth

y(1)

y(2)

y(3)

Figure 2.11: Computing per-image mean precision at k; transpose for per-label mean precision at k (note that the prediction vector
is not sorted by score in the figure)

3
4



0 0 10

scores E[y] .7 .1 .9.2

pred@1

1 0 1

pred@3

1 1 11

pred@4

1 0 1 1ground truth y 1 0 1 1

1 0 1 1

1 0 1 1

TP+ FP = 1

TP = 1

TP+ FP = 3

TP = 2

TP+ FP = 4

TP = 3

prec@1 = 1
1

prec@3 = 2
3

prec@4 = 3
4

AP(x) = 0.81
1R = {1, 3, 4}

.7

.1

.9

.2

Figure 2.12: Computing AP for an instance (note that the prediction vector is not sorted by score in the figure)

3
5



2.3.2 CNNs and Deep Learning

Convolutional neural networks are a kind of architecture especially suited for processing
data that enjoys from some kind of spatial locality, particularly visual data.

Whereas in a traditional, “fully connected” neural network every unit is connected to
all units belonging to the previous layer convolutional networks exhibit sparse interactions
between units – thus exploiting locality.

Local features are thus extracted and combined to form higher-order features, a tech-
nique popular also in the field of classical computer vision [Lec89].

Recall from equation (2.5) and equation (2.6) that “ordinary” multi-layer networks use
the dot product operation followed by a possibly non-linear activation function to compute
the output of a unit, and, consequently, of a layer; a convolutional neural network is defined
thusly:

Definition 10 (Convolutional Neural Network). A neural network that uses the convolution
operation instead of the dot product in at least one of its layers [GBC16].

The convolution operation is often accompanied by pooling; networks such as the one
represented in figure 2.14, made up of layers of convolution and pooling operations which
feed into fully connected subnets one after another are very common ([LBB+

98], [SZ15]),
but are by no means the only possible architecture (a significant counterexample being
[HZRS16]; [KSH12] is a slight variation in that it employs two parallel pipelines for ease of
implementation).

Convolutional layers act as feature detectors tasked with learning to recognize instances
of a particular feature anywhere in the input plane (called “translation invariance”) [LBD+

89],
with somewhat approximate information about its position.

As evidenced by [NHH15], layers tend to operate in a semantically hierarchical fashion:
lower layers learn lower-level features (ridges, edges, specific colors), whereas upper layers
learn features at a higher semantic level (“wheel”, or “truck”, or even “vehicle”) – this is
seen visualized in figure 2.13.

Deep convolutional neural networks (as opposed to early, “shallow” CNNs such as
[LBB+

98]) are a staple of deep learning and, in turn, have made the “deep learning” ap-
proach popular in computer vision, thanks to the the outstanding performance from sys-
tems such as [KSH12] compared to classical computer vision solutions.

Definition 11 (Deep learning). Generally, “deep learning” refers to machine learning sys-
tems that free deep learning practitioners from engineering features by hand, particularly
– in contrast with “ordinary” representation learning – by the learning a hierarchy of rep-
resentations [GBC16].

Convolution The (discrete) convolution operation operation itself is defined as [FP12]:

(I ∗K)i,j =
∑
m

∑
n

Im,nKi−m,j−n

where I is the input image and K is a two-dimensional kernel.
We shall assume that the sum is over a “large enough” range ofm and n that all nonzero

values are taken into account [FP12].

36



Figure 2.13: Top single strongest activations for a given feature map projected down to
pixel space using the approach of [NHH15], showing the hierarchical nature of the features
in the network. Layer 2 responds to corners and other edge/color conjunctions. Layer 3 has
more complex invariances, capturing similar textures, Layer 4 is more class-specific, Layer
5 shows entire objects with significant pose variation. Image reproduced from [NHH15].

37



Feature extraction, lower to higher level Classification

max-pool convolution max-pool

la
be

ls

convolution

Input

Figure 2.14: Basic structure of a typical CNN

When the kernel is smaller than the input, for every i, j only a subset of neighbouring
pixels contribute to S(i, j), thus achieving the locality previously mentioned.

Notice that the same kernel is reused for the whole image, much like a “sliding window”
or “moving spotlight”, and, therefore, for the different units connected to the output of the
convolution stage; thus affording translation invariance [GBC16].

The kernel K for the convolutional layers are the parameters we’ll seek to learn, along
with the weights for the fully connected layers.

Appropriate choices of K can, among other things, result in smoothing, sharpening,
edge detection, possibly wrt only one spatial dimension [FP12]; a particularly enlightening
interactive demo can be found at [Pow].

Besides the kernel, convolutional layers are characterized by:

1. depth – roughly, the number of filters “looking” at each pixel and, therefore, the num-
ber of features the layer will learn, and

2. stride – the number of pixels by which the filter is moved at every iteration

these are usually fixed, non-learnable parameters.

Pooling Typically, in a convolutional layer, convolution is followed by a nonlinear stage
and then by a pooling stage.

A pooling function replaces the output of the net at a certain location with a summary
statistic of the nearby outputs; its purpose is to progressively reduce the spatial size, and,
consequently, to reduce the amount of parameters [cs219] [GBC16].

The benefits are manifold: the amount of computation is made manageable, overfitting
is kept under control and invariance to small translations is achieved.

Average pooling is a frequent choice; recently max-pooling has become gained popular-
ity.

Pooling layers are also characterized by field size and stride; these are usually fixed
parameters.

An extensive introduction to CNNs is found in [cs219]; a rather nice interactive demon-
stration of a classic LeNet-style CNN is found at [Har15].

2.3.3 Transfer learning and pretrained models

Training a CNN from randomly initialized weights is expensive in terms of data and time.

38



I =

1 2 3

4 5 6

7 8 9

 K =

−1 −2 −1

0 0 0

1 2 1

 I ∗K =

−13 −20 −17

−18 −24 −18

13 20 17



(I ∗K)0,0 =
∑
m

∑
n

Im,n ·K0−m,0−n = 13

(I ∗K)1,0 =
∑
m

∑
n

Im,n ·K1−m,0−n = −20

...

(I ∗K)2,2 =
∑
m

∑
n

Im,n ·K2−m,2−n = 17

(a) Input, kernel, result and computation

1 2 3

4 6

7 8 9

5

−1 −2 −1

0 0 0

1 2 1

−1 0 −1

−1

0

1

i
j

(b) Visualization of step (I ∗K)0,0 =∑
m

∑
n Im,n ·K0−n,0−m = 13

1 2 3

4 5 6

7 8 9

−1 −2 −1

0 0 0

1 2 1

(c) Visualization of step (I ∗K)2,2 =∑
m

∑
n Im,n ·K2−m,2−n = 17

Figure 2.15: An example of a convolution operation (adapted from [son19])

poolmax(2,2)



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4


 =

[
6 8

3 4

]

(a) Example of max-pooling with field size and
stride 2

poolavg(2,2)



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4


 =

[
13
4

21
4

2 2

]

(b) Example of avg-pooling with field size and
stride 2

Figure 2.16: Examples of pooling operations

39



The hierarchical structure discussed in the previous section and highlighted in fig-
ure 2.13 fortunately lends itself well to training the network once on a large dataset for
a given task and, at a relatively modest expense in terms of data and time, adapt the model
to a new dataset: this is achieved by extracting features from one of the terminal layers
of a pre-trained CNN, in which the weights are “frozen”, and using them to feed a new
one-layer (or multi-layer) fully connected network, which will be the only one to be trained.

An approach often used in practice is to “dump” fixed features for the layer of interest
once, instead of running the whole architecture.

Alternately, is possible, at an additional cost of time and memory, to fine-tune the
weights of more than one layer of the pretrained network: note that the representational
power of a large network might be underutilized otherwise – in the case of ImageNet for ex-
ample, which contains many dog breeds, a significant portion of the representational power
of the ConvNet may be devoted to features that are specific to differentiating between dog
breeds [cs219], which might not be of interest.

ImageNet [DDS+
09], which contains 1.2 million images with 1000 categories, is popular

as a dataset [cs219] and several pre-trained models are available for download.

2.4 Distributional word representations

In the field of natural language processing, one-hot encoding has enjoyed continued pop-
ularity as a way to represent individual words, particularly in combination with the “bag
of words” model, which amounts to discarding order and grammar, in favour of simply
keeping count of the words that appear in a document.

Definition 12 (One-hot). Given a dictionary of τ words 〈w1,w2 . . . wτ〉 the one-hot vector
for the i-th word is:

onehot(wi)
∆
= eτi

where ei is the vector of size τ which is null except for is i-th entry.

Definition 13 (Bag of words representation). Given a document consisting of a sequence
of words D = 〈wi1 ,wi2 . . . win〉, and a representation π(w) (e.g. onehot(w)), the document’s
bag-of-words representation bow(w) amounts to

bow(D) ≡
∑

i∈{i1,i2,...in}

π(wi)

If π(w) = onehot(w), this results in a vector
[
v1 v2 . . . vτ

]
, where vi = k iff the i-th

word in the dictionary appears k times in a text.
This comes with the following limitations:

1. Results in an high dimensional, sparse vector

2. No information about the word order is preserved, by design

3. No explicit information can be had about word similarity - both syntactically and in
terms of meaning6

6The two are not necessarily disjoint: e.g. in a large number of languages words with a root in common
often have a semantic relationship

40



The last point is of particular interest to us.
For example, suppose wi = "duck", wj = "chicken", wk = "UFO".
Clearly the bag-of-words encoding of

I'll have the roast chicken, please.

will differ from that of

I'll have the roast goose, please.

exactly as much as it differs from that of

I'll have the roast UFO, please.

Some information is therefore lost.
This, along with the first point, is addressed by distributed representations [Hin86], also

called distributional representations or word embeddings, in which every word is encoded
by a pattern distributed over a smaller number of dimensions, in such a way that, while the
individual dimensions become meaningless, the similarity between vectors can capture the
similarity between words.

In [MCCD13], the authors propose techniques to learn such representations automati-
cally, optimizing the resulting vector space to capture word similarity in human judgment
as approximated by the frequency of contextual co-occurrence of words.

Precomputed dictionaries of so-called word2vec embeddings, obtained with such tech-
niques exposed in the above-mentioned paper, are available.

WordNet [Mil95] is a database of English words, curated by human experts, that repre-
sents words and the relations that exist between them, such as synonymity, hypernymity
(the relation between a word and a “more general one”), meronymy (the relation of “being
a part of”, variously defined).

In [SBRS], the authors attempt to use WordNet to construct word embeddings that cap-
ture the relationship between words as represented and recorded in the WordNet database,
thus leveraging and incorporating the semantic knowledge contained therein.

41



This page intentionally left blank.



Chapter 3

Literature review

As seen in [LUB+
16], there is a growing literature on the problem of image auto-annotation

and the more general problem of predicting relevance of a tag to an image using meta-
data, which complements the large body of literature that focuses on exclusively visual
approaches [SWS+

01].

3.1 Metadata-based models

[GVS10] considers a scenario in which only visual data is available at test time, but metadata
from social media websites are available at training time and can be leveraged to improve
the visual-only classifier using semi-supervised learning.

They assume having a set L of training images with ground truth labels and metadata,
plus a set of training images U with metadata but no ground truth.

The authors envision a two-step process to leverage the metadata; in principle:

• Firstly, they use multiple kernel learning to learn a joint visual-textual classifier fc
from L, and use it to estimate the class labels for the images in U, which they assume
are (substantially) accurate.

• Then, they train a visual-only SVM classifier from all training ex- amples in L ∪ U

(where the ones from U have synthetic labels from fc).

In [LXH+
17], the authors consider that the common pattern of feeding the output of

a CNN into an RNN via a visual embedding output by the CNN imposes upon the RNN
the duty of predicting the visual concepts and modelling their correlations for generating
structured annotation output, with a detrimental effect on the end-to-end training of the
CNN and RNN; they suggest using a semantically regularised embedding layer to decouple
the CNN and RNN.

3.2 Neighbour-based models

Several authors have proposed models that use metadata to construct neighbourhoods from
which to draw information.

In [GMVS09], the authors present a nearest neighbour model that predicts the presence
or absence of tags in an annotated image by taking a weighted combination of the tag

43



absence/presence among neighbours, under the assumption that a distance measure is
provided – possibly visual similarity.

The authors attempt to predict the presence or absence of a tag w in image i (yiw ∈
{−1,+1}) as a weighted sum over the training images, weighted by a certain weight πij,
measuring the weight of image j wrt i:

p(yiw = +1) =
∑
j

πijp(yiw = +1|j)

where

p(yiw = +1|j) =

{
1− ε iff yjw = +1

ε otherwise

to avoid zero prediction probabilities.
The weight πij, defined as 0 for i = j, can be obtained from NN rank or directly as

distance measure.
The authors stress that the dependencies between keywords in the training data are not

explicitly modeled, but are implicitly exploited.
[GHF12] propose deriving a measure of similarity from Flickr image groups which can

then be used to predict how unseen examples belong to Flickr groups; a key observation
there is that Flickr groups (and, we speculate, Flickr tags) can embed more complex implicit
knowledge about image similarity than the “usual” hand-applied tags and labels from
datasets do.

The authors exemplify this by noting the existence of a Flickr group called “No-Flash
Night Shots”.

[ML12] observe that social-network metadata is relational rather than categorical, and
can be used to explicitly construct neighbourhoods, thus providing reliably provide context
not contained in the image itself.

The model proposed by the authors is inherently multimodal – i.e. different sorts of
metadata are taken into account to determine neighbours (figure 3.1).

However, the approach used implies two limitations:

• Firstly, it is not possible to make predictions for a single image; the per-class predictor
Ŷc(χ,Θc) proposed by the authors, in which χ s.t. |χ| = N is a dataset and Θc is a
parameter vector for category c, has codomain {0, 1}N and assigns a 0 or a 1 in i-th position
iff image i is predicted to belong to category c, and has the form

Ŷc(χ,Θc)
∆
= arg max

Y∈{−1,1}N

N∑
i=1

yi · 〈φc(xi), θnodec 〉+
N∑
i,j=1

N∑
j=1

δ(yi = yj)〈φc(xi, xj), θedgec 〉

where φc(xi, xj) is a feature vector encoding the relationship between xi and xi and
δ(yi = yj) iff the predictions for yi equal those for yj.

• The classifier learning is parametric: the optimization process finds optimal Θc wrt a
given χ and its associated ground truth Yc. It is not robust to changes in the data-
generating distribution or to the addition of a class, which require retraining.

44



Images sharing a tag

Taken on the same day

Uploaded by the same user or ”friends“

z2

z1

x

z3 z4

z5

Figure 3.1: The inherently multimodal relational model proposed in [ML12]; actual distance
not pictured

This makes the proposed model’s usefulness limited for popular applications such as
social media websites or on-line, changing databases; moreover, it does not use any visual
information.

In [JBFF15], the authors try to build upon the same intuition while avoiding the previously-
mentioned disadvantages.

Social network metadata is used to generate neighbourhoods of images nonparametri-
cally, then the proposed model operates on these neighbourhoods with a parametric model
that learns to optimally leverage the visual features of neighbouring images.

Central to the model is the notion of generating and sampling from candidate neighbour-
hoods. Let D = {〈x,y〉|x ∈ X,y ⊆ Y} be a dataset associating each image x with a set y of
labels.

A neighbourhood is an element of Z = 2X; for each image x a set of candidate neigh-
bourhoods Zx ⊆ Z is generated.

At training time Zx is (non-uniformly) drawn from training images, whereas at test
time it is drawn from the test set using only information contained in the test dataset, thus
achieving non-parametricity wrt neighbourhoods.

A function f(x, z;w) parametrized over learned w is used at test time to predict label
scores for x conditional to z being a neighbour.

The predicted label scores conditional to Zx being a neighbourhood are given by

s(x;w) ∆=
1

|Zx|

∑
x∈Zx

f(x, z;w)

Neighbourhoods are generated using a nearest-neighbour approach: each type of meta-
data has a vocabulary T of possible values and associates each image x ∈ X with a subset
tx ⊆ T ; the Jaccard distance1 is used to compute nearest neighbours, defined as:

J(x, x ′) ∆= 1−
|tx ∩ tx ′ |
|tx ∪ tx ′ |

(3.1)

With J(x, x) ∆= 0.

1The complement of Jaccard similarity, also known as intersection-over-union

45



φ(zm)zm
CNN

φ(z1)z1
CNN

...

φ(x)x
CNN

σ(wzφ(zm) + bz)

σ(wxφ(x) + bx)

f(x, z1...m,φ)

max

σ(wzφ(z1) + bz)

Figure 3.2: Neural architecture from [JBFF15]; x is the image to be classified; z1...n are its
neighbours. Dashed line signifies weight sharing.

Labels are then predicted with the parametric architecture summarized in figure 3.2;
notice how the weights for neighbours are shared.

In the end the learned classifier is

f(x, θ; z) = wy

[
vx
vz

]
+ by

where z is a vector of neighbours obtained nonparametrically, x is the image to be
classified, θ are learnable parameters wx,wz,wy, bx, bz, by and

vx = σ(wxφ (x) + bx)

vz = max
i=1...m

(σ(wzφ (zi) + bz))

where φ (x) are visual features extracted for x.

3.3 Semantic models

[HZD+
16] starts from the explicit observation observes that diverse levels of visual catego-

rization are possible; depending on the level of abstraction desired, different labels could
be just as “right” – e.g. “pug” vs. “dog” vs. “animal” – we observe that this is connected
to the notion of semantic gap (see chapter 1) more than to the notion of sensory gap.

The authors propose modeling categorization of visual concept at different levels, using
a graph-like structure that encodes both hierarchical and horizontal relationships, including
negative correlation, and using a stacked neural network to make predictions.

The authors use external knowledge of the ontological relationship between labels from
a WordNet taxonomy [Mil95].

46



x

z1

z2

CNN FC

la
b
el
s

max FC

(a) LTN

x

z1

z2

CNN FC

RNN

la
b
el
s

(b) RTN

x

ox

z1

z2

CNN
max

la
b
el
s

FC FC

(c) LTN+Vecs

Figure 4.1: Visual neural architectures

Chapter 4

Our models

We describe, explain the rationale and examine the performance of a set of models that
build upon [JBFF15] in different ways.

Two main families of models that leverage metadata neighbourhoods and are built
around a neural architecture are explored: visual and joint models.

Both arise out of – or, more accurately, are “frameworks” on which to instantiate – a
combination of parameters: the specific neural architecture, which we explore in section 4.3
the semantic transformations used on metadata and the distance measures used to compute
neighbourhoods, which we explore in section 4.2, and finally neighbourhood size, which
we explore in section 4.1.

4.1 Neighbourhood generation and size

What all models have in common is that, exactly as in [JBFF15], discussed in chapter 3 and
on which this thesis builds upon:

1. First, a neighbourhood Zx of images, where x is the image to be classified, is generated

47



using metadata

2. Then, the network is trained to classify x given the image x and its neighbours in Zx

Neighbourhood generation is parametrized over neighbourhood size m and max rank
M in the following way:

Let Zx be the M-nearest neighbours of x according to a distance measure δ.
The set of candidate neighbourhoods for an image x is the set

Zx
∆
= {s ∈ P(Zx) : |s| = m}

The prediction s(x, θ) is the average

s(x, θ) =
1

|Zx|

∑
z∈Zx

f(x,~z; θ)

of f(x,~z; θ) over all candidate neighbourhoods, where x is the image to be classified,
~z = 〈z1, z2, . . . zm〉 are the images in the the neighbourhood and f(x,~z; θ) is the output of a
given neural architecture described in section 4.3.

The model is trained by minimizing:

θ∗ = arg min
θ

∑
〈x,y〉∈Dtrain

L(s(x, θ), y)

This general framework, which is exactly that of [JBFF15], is depicted in figure 4.4.
Note that neighbours are ordered according to their distance when fed to the neural

network – this is a detail not mentioned nor relevant in [JBFF15], since the neural model
found therein cannot discriminate between its inputs, due to the effect of weight sharing
and of the max-pooling operation.

A variation is had in the case of joint models, in which the metadata is fed directly to the
neural network, possibly after a transformation step π, as discussed in section 4.2, which in
our proposed models will involve a lookup in a dictionary of semantic embeddings.

In this case, the prediction s(x, θ) is the average of

f(x,π(ox),~z,π(~oz); θ)

over all candidate neighbourhoods, where x is the image to be classified, ox is the meta-
data vector for image x and π(ox) is its transform (possibly π = id) and ~z = 〈z1, z2, . . . zm〉
are the images in the the neighbourhood.

We shall use π(~oz) as shorthand for map(π, ~oz)
∆
= 〈π(oz1),π(oz2), . . . ,π(ozm)〉, where ~oz are

metadata vectors for the neighbourhood.
The resulting framework is depicted in figure 4.5.
To assist intuition, one example of an image from the dataset NUS-Wide and its 6 nearest

metadata neighbours wrt Jaccard distance is reproduced in figure 4.3.

48



x

maxFC

FC

ox

z1

oz1

z2

oz2

CNN
FC

la
b
el
s

(a) LTwin
FC

x

ox

z1

oz1

z2

oz2

maxCNN
la
b
el
s

FC

(b) LTN+AllVecs

CNN

RNN

x

ox

z1

oz1

z2

oz2

la
b
el
s

FC

(c) LZIP

x

RNN

RNN

FC

FC

ox

z1

oz1

z2

oz2

CNN
FC

la
b
el
s

(d) LTwin+RNN

x

RNN

RNN

RNN

FC

FC

ox

la
b
el
sz1

oz1

z2

oz2

CNN

(e) LTwin+2RNN

Figure 4.2: Joint neural architectures

49



Image: 163792 grass

centipede, yellow, naturesfinest, k100d,
macro, pentax, kit, eyes, animals, grass,
chenille, nature, 1855, johannpix, cater-
pillar

Neighbour: 140470 animal

flickrdiamond, animalkingdomelite,
dragonfly, naturesfinest?, k100d?,
macro?, pentax?, wild, kit?, animals?,
blue, damselfly, green, nature?, bluerib-
bonwinner, 1855?, diamondclassphotog-
rapher, closeup, johannpix?, libellule

Neighbour: 140175

sun, sky,
flowers,
clouds

yellow?, naturesfinest?, k100d?,
pentax?, flash, soe, kit?, outdoors,
overtheshot, 1855?, colors, sun, flowers,
johannpix?, sky, tulips, fillin

Neighbour: 15106 animal
yellow?, macro?, 5hits, selectivecol-
orization, animals?, selectivecolor, bird,
nature?, chicken, chick, beak, baby, bw

Neighbour: 114315

leaf,
flowers,
plants

yellow?, naturesfinest?, yellowflower,
macro?, greatflowersmacro, pottedplant,
greenhouse, nature?, olympus, ilovena-
ture, datura, flower, botany, diamond-
classphotographer, winter08, goldenmix,
brugmansia, trumpetflower

Neighbour: 86282 animal

elephants, wildlife, southafricanwildlife,
naturesfinest?, borntobewild, good-
manandy, animals?, goodman, btbw,
african, nature?, wildlifesouthafrica,
wildlifeinsouthernafrica, wildilfepho-
tographer, andygoodman, african-
wildlifephotographer, southernafrican-
wildlife

Neighbour: 140304

rocks,
moun-
tain,
water

wood, alps, k100d?, pentax?, water,
exposure, waterfall, kit?, long, 1855?,
johannpix?, queyras, mountain, france

Figure 4.3: An image and some neighbours, sorted nearest to farthest. Tags marked with
? are shared with the image by the neighbours. Note the decreasing semantic and visual
relevance. Note also the relative arbitrariness of the ground truth label(s): there does not
seem to be a particular reason why image 163792 should be “grass” instead of “animal”

50



Predictions

NN search in Database

Image to be classified

Metadata neighbours

Neural architecture

x

z1

z2

Figure 4.4: General framework for visual models. Note that the image to be classified is
already in database.

51



Predictions

Image to be classified

Metadata neighbours

Neural architecture

semantic mapper
(optional)

A v

x

z1

z2

oz1

ox

oz2

π(ox)
π(oz1)
π(oz2)

embedding dictionary

Figure 4.5: General framework for joint models; optional use of semantic transformations in neighbour-
hood generation not pictured. Note that the image to be classified is already in database.

52



4.2 Metadata semantic mappings π and distance measures δ

In our models, metadata is both used to generate neighbourhoods and is supplied to those
joint network architectures that explicitly take metadata as input(s), as we will see in sec-
tion 4.3.

In [JBFF15] social network “tags”1 are identified as the type of metadata for image
classification that yields the largest performance improvement over a visual-only classifier.

We will focus on this sort of metadata, which we will assume is represented as binary
vectors in its starting representation:

Definition 14. Let x be an image and t(1), t(2), . . . t(n) be all tags relevant for x chosen from
a vocabulary, i.e. a set TAGS of τ tags.

The binary vector ox ∈ {0, 1}τ for the image is then the sum of the one-hot vectors
(section 2.4) for each of its tags:

ox
∆
=

∑
i s.t. t(i)∈{t(1),t(2),...t(n)}

eτi

We will consider metadata transforms that map a vector ox to a semantic space:

π : {0, 1}τ → Rn

Having one such transformation, we can then perform one of the following, both, or
none (which amounts to using π = id):

1. Use the transformed metadata, along with a suitable distance measure δ, for generat-
ing the neighbourhood Zx for x

2. Use the transformed metadata π(ox) as input to joint network architectures that take
metadata input

Recall that one of the key advantages of the framework in [JBFF15] is its nonparametric-
ity wrt metadata and, therefore, its adaptability to different metadata at test time.

However, it is worth noting at this point that not all joint models are nonparametric in
this sense, and that π has a key role in enabling nonparametricity.

It is clear that, unlike visual models, where metadata is used implicitly, a neural network
trained to make predictions as a function of one or more binary vector becomes useless
the very moment the meaning encoded in those vectors changes – which is, when the
vocabulary changes.

Moreover, the learned weights are not even of the right shape to be applied to binary
vectors of different lengths!

This limits the transferability of the learned model to a different database, which is a
key concern for us.

Suppose, for example, that the model is trained to predict labels from visual features
and binary vectors of the form 〈t1, t2, t3〉where ti = 1 iff the tags “coffee”, “bicycle”, “bear”,
respectively, are relevant for a given image.

1Not to be confused with labels we wish to predict

53



If t1, t2, t3 came to mean, respectively, “coffee”, “hydrant”, “lamp” the model would no
longer work well.

Semantic maps π can decouple the low-level bit representation from the semantic mean-
ing, making models learned on a tag vocabulary applicable to a different one, as long as
an appropriate π ′ is available that maps the “new” binary vectors onto the “old” semantic
space.

We will discuss choices and significance of π and δ in section 5.1.2.

4.3 Neural architectures

We present a set of neural architectures partitioned in two broad subsets, depicted in fig-
ure 4.1 and figure 4.2: visual and joint models.

Visual models, which we discuss first, exclusively take visual images as an input,
whereas joint models are directly fed with metadata instead of leveraging metadata only
implicitly, through neighbourhoods generated from metadata.

4.3.1 Visual architectures

Visual only

This architecture acts as baseline; it simply amounts to a fully connected layer over visual
features φ (x) output by a CNN for an image x.

We have, therefore,

f(x,~z; θ) =Wyφ (x)by

with

θ = {w, b}

Note that ~z is not used.

LTN

This architecture is depicted in figure 4.1a and is exactly the architecture used in [JBFF15];
we will consider it a “baseline” of sorts as well.

Its output is

f(x, θ;~z) = wy

[
vx
vz

]
+ by

parametrized by θ = {wy, by,wz, bz,wx, bx}, where ~z = 〈z1, z2 . . . zm〉 is a vector of neigh-
bours obtained nonparametrically, x is the image to be classified, and

vx ≡ σ (wxφ (x) + bx)

vz ≡ max
i=1...m

(σ (wzφ (zi) + bz))

where σ is a ReLU layer.
Note that the weights wz, bz are shared among all z1...m; the hidden layers vz and vz

have the same width, which we will denote as h.

54



RTN

This architecture extends LTN by replacing the max-pooling operation with an RNN, with
the expectation that individual neighbours and that, being the RNN strictly more powerful,
it can be trained to be more discriminating.

Note that weight sharing among visual pipelines for neighbours is retained. This archi-
tecture is depicted in figure 4.1b.

We have

f(x, θ; z) = wy

[
vx
vz

]
+ by

parametrized by

θ = {wy, by,wz, bz,wx, bx}∪ {wRNN}

where again x and ~z are the image to be classified and its neighbours, and

vx ≡ σ (wxφ (x) + bx)

vz ≡ loop (RNN(wRNN), 〈z1, . . . zn〉)

Where
loop (RNN(wRNN), seq) ≡ fst(fold(RNN(wRNN), 〈~0,~0〉, seq))

with2

fold(f, z, 〈x1, . . . xn〉)
∆
= fold(f, f(z, x1), 〈x2 . . . xn〉)

fold(f, z, 〈〉) ∆= z

fst〈xl, xr〉
∆
= xl

where RNN(wRNN)(〈hi−1,oi−1〉, xi) = 〈hi,oi〉 is the internal state and output of the
RNN given internal state hi−1 and input xi and kernel wRNN.

In this case, RNN is an LSTM with linear activation: empirically, it has proved itself
slightly more performant than a more conventional tanh activation followed by a fully
connected layer.

This architecture is depicted in figure 4.1b.
Again, σ is ReLU and the layers vz and vz have the same width, which we will denote

as h.

4.3.2 Joint architectures

LTN+Vecs

This architecture makes use of the metadata ox for the image to be classified as input to the
same fully connected layer that follows the CNN for the image input x.

It is depicted in figure 4.1c.

2fst, fold are the familiar functional programming definitions as found in e.g. Haskell

55



Its output is

f(x,π(ox),~z,π(~oz); θ) = wy

[
vx
vz

]
+ by

Where

vx ≡ σ
(
wx

[
φ (x)

π(ox)

]
+ bx

)
and, as in LTN, z is a vector of visual features for neighbours obtained nonparametrically,

x is the image to be classified, and

vz ≡ max
i=1...m

(σ (wzφ (zi) + bz))

Note that neighbour metadata vectors ~oz are not used at all.

LTN+AllVecs

This architecture, depicted in figure 4.2b, unlike the previous one, uses metadata vectors ox
for the image to be classified and for its neighbours ~oz.

Its output is

f(x,π(ox),~z,π(~oz); θ) = wy

[
vx
vz

]
+ by

Where

vx ≡ σ
(
wx

[
φ (x)

π(ox)

]
+ bx

)
and

vz ≡ max
i=1...m

(
σ

(
wz

[
φ (zi)

π(ozi)

]
+ bz

))
Notice how it therefore essentially amounts to LTN in which visual features are replaced

to a concatenation of features and metadata.
In this case, too, σ is ReLU and the hidden layers vz and vz have the same width, which

we will denote as h.

LTwin

This architecture, depicted in figure 4.2a, is fed metadata oxfor the image to be classified and
for its neighbours as oz1...m – in other words, the same inputs as LTN+AllVecs, but processes
them in separate pipelines.

The neighbours are blended with a max-pooling layer, so it is not able to discriminate
between nearest and farthest neighbours.

Its output is

56



f(x,π(ox),~z,π(~oz); θ) = wy


vx
vz
ux
uz

+ by

parametrized by

θ = {wy, by,woz , boz ,wox , box ,wz, bz,wx, bx}

Where, as in LTN,

vx ≡ σ (wxφ (x) + bx)

and

vz ≡ max
i=1...m

(σ (wzφ (zi) + bz))

and

ux ≡ σ (woxπ(ox) + box)

and

uz ≡ max
i=1...m

(σ (wozπ(ozi) + boz))

The hidden layers vz and vz have the same width h.

LTwin+RNN

This architecture, depicted in figure 4.2d, differs from the preceding one in that the max-
pooling layer is replaced with a RNN.

Once again, RNN is an LSTM with linear activation: empirically, it has proved itself
slightly more performant than a more conventional tanh activation followed by a fully
connected layer.

Its output, parametrized by

θ = {wy, by,woz , boz ,wox , box ,wz, bz,wx, bx}∪ {woRNN ,wRNN}

is:

f(x,π(ox),~z,π(~oz); θ) = wy


vx
vz
ux
uz

+ by

Where

vx ≡ σ (wxφ (x) + bx)

and

57



vz ≡ loop (RNN(wRNN), 〈l1, . . . lm〉)

where

li ≡ max
i=1...m

(σ (wzφ (zi) + bz))

and

ux ≡ σ (woxπ(ox) + box)

and

uz ≡ loop (RNN(woRNN), 〈j1, . . . jm〉)

where

jz ≡ (σ (wozπ(ozi) + boz))

The hidden layers vx, vz,ux,uz, have the same width h.

LTwin+2RNN

This architecture, depicted in figure 4.2d, differs from the preceding one in that the final
fully connected layer is also replaced with a RNN.

Its output, parametrized by θ = {wy, by,woz , boz ,wox , box ,wz, bz,wx, bx}∪ {woRNN ,wRNN,wRNN},
is and

f(x,π(ox),~z,π(~oz); θ) = loop (RNN(wRNN), 〈vx, vz,ux,uz〉)

where vz, vz,ux,uz are defined as in LTwin+RNN.

LZIP

This architecture is depicted in figure 4.2c. Its output is:

f(x,π(ox),~z,π(~oz); θ) = loop (RNN(wRNN), 〈vx,ux, vz1 ,uz1 , . . . vzm ,uzm〉)

Where

vx ≡ σ (wxφ (x) + bx)

and

ux ≡ σ (woxπ(ox) + box)

·− · � ·− ·

58



Through the rest of this document we use abbreviations to denote the various models
that arise through combinations of the various parameters detailed in this section, of the
form:

arch-m× M-{+n:e1}{+f:e2}

Where arch is the network architecture, m and M are the neighbourhood size and the
max rank M, e1 is the map applied to metadata for computing neighbourhoods used if it
is different from id, e2 is the mapping used to compute π(~oz) fed to the network if it is
different from id.

Where m,M are obvious or are free parameters, we write

arch-{+n:e1}{+f:e2}

59



This page intentionally left blank.



Chapter 5

Experiments

5.1 Experimental protocol

We follow the protocol of [JBFF15] closely.
We use Tensorflow’s implementation of the RMSProp algorithm[Hin] with He-Zhang

initialization [HZRS15], dropout with p = 0.5 batch size 64 (in lieu of 50, as found in
[JBFF15]); we use h = 500, as in [JBFF15].

We use L2 regularization with λ = 3× 10−4 and learning rate 1× 10−4.
λ was chosen with grid search; learning failed to converge with λ = 3 · 10−3 reported in

[JBFF15].
We use early stopping with a maximum of 10 and a minimum of 3 epochs, incremented

to 15 and 5 for joint models; the results in [JBFF15] are obtained by selecting the best-
performing model out of all 10 epochs instead.

These parameters, shared among all architectures, were chosen by coarse grid search
and subsequent hand tuning.

The sheer number of architectures and parameters and the long running time of some
experiments made it impractical to perform extensive grid search in the allotted time with
the hardware available to us.

Attempting to hand-tune the hyperparameters for individual models was not found to
be beneficial.

We run the models with (3, 6), (6, 12) and (12, 24) as choices of (m,M).

5.1.1 Dataset and pretrained weights

We use the NUS-Wide dataset [CTH+
09], which consists of a set of 269,648 images up-

loaded on the photo sharing website Flickr, annotated with ground truth for 81 concepts
for evaluation.

NUS-WIDE is imbalanced over classes – whereas the tag “sky” is relevant for around
53,000 images, many classes have less than a thousand – or a hundred – images.

We restrict ourselves to the fixed subset of 190,253 images used in [JBFF15] for ease of
comparison; the images used are those that were still online when the authors of [JBFF15]
conducted their experiments. They are tagged with a matrix of 422,364 unique Flickr tags,
which we narrow down to the τ = 5000 most frequent tags.

The dataset is split into a training set, a validation set and a test set.

61



We build “splits”, in which images are randomly partitioned to form test, validation
and test sets of 110,000, 40,000 and 40,253 images respectively.

We generate 5 such splits; we run all experiments on all 5 splits and average the results.
We only train the last layer of the CNN; our CNN of choice is the the implementa-

tion of AlexNet[KSH12] found in Caffe, that comes with pretrained weights for ImageNet
[DDS+

09], same as [JBFF15].

5.1.2 Semantic mappings and distance measures

Given a map or dictionary of embeddings β : TAGS → Rn for some n, we define ρ(ox;β) as
the sum of the vectors β(t(i)) for each tag t(i) relevant for x, i.e.:

ρ(ox;β) ∆=
τ∑
i=1

ox(i) ·β(t(i)) (5.1)

We consider the following possibilities for mappings π and distance measures δ, which
we will discuss in detail shortly:

1. π ≡ id, δ ≡ J, where J is the Jaccard distance

2. π(x) ≡ ρ(ox;β) and δ ≡ simcos where β can be:

(a) w2v

(b) wnet

(c) synthwnet

id – i.e. raw binary vectors

Neighbourhoods are computed using the Jaccard distance J (equation (3.1)) between binary
vectors as a distance measure.

Binary vectors ox for each image x (or neighbour zi) are directly handled by the neural
network, without further processing.

w2v

Recall from section 2.4 that w2v vectors are designed to be similar for words that have a
high co-occurrence frequency and, therefore, are likely to be semantically similar.

We use a dictionary of word2vec embeddings made available from [w2v19]; they were
obtained by training on a 100-billion-words subset of the Google News database; it contains
300-dimensional vectors for 3 million words and phrases.

In this way we expect (see discussion of w2v in section 2.4) to recover some semantic
information from the tags and improve performance – as well as achieving decoupling from
the low-level binary representation for joint architectures (section 4.2).

Whereas previously an image tagged only with boy and motorcycle would have empty
intersection and therefore infinite distance from one tagged with kid and motorbike, we
expect the vectors w2v(boy) (resp. w2v(motorcycle)) to be spatially “similiar” to w2v(kid)
(resp. w2v(motorbike)).

62



We expect the sum of similiar vectors to yield a similar vector, and, therefore, images
tagged with semantically similar sets of tags to produce similiar sums ρ.

Cosine distance is the choice of δ used, as defined as [MRS08]:

distcos(x1, x2) = 1−
~x1 ·~x2
|~x1||~x2|

Notice that cosine similarity is insensitive to the absolute magnitude of vectors – we
don’t expect a significant difference between computing cosine similarity over the sum
equation (5.1) of individual embeddings vs. their average.

wnet

WordNet embeddings work in the same fashion as w2v embeddings, except that β(x) is
extracted from a dictionary where vector representations are optimized to be similiar if the
words are close on the WordNet ontological graph.

Cosine distance is again the choice of δ.
WordNet embeddings are those made available by the authors of [SBRS] on their repos-

itory [NG19], a dictionary of 650-dimensional vectors obtained from Princeton WordNet 3.0
with 60,000 words.

Recalling that our vocabulary has size τ = 5000, we note that 726,722 total tags and 1432

unique tags (0.2864 of τ) are not present in the w2v dictionary, whereas 1,791,289 total and
3513 unique tags (0.7026 of τ) are not present in the wnet dictionary.

We therefore expect the WordNet dictionary to be at a very significant disadvantage.

synthwnet embeddings

We observe that the cardinality of intersection set between the w2v and the wnet dictionary
is 26,887 words, which is not large, but an order of magnitude larger than the intersection
between the wnet dictionary and the tag vocabulary.

We therefore attempt a knowledge transfer approach and impute some of the missing
vectors by training a neural network to approximate the missing wnet vector given the w2v
vector that we have.

We don’t expect, of course, to make the missing information appear out of nowhere –
we just want to leverage the wnet vectors that we do have; the imputed ones will embed at
most as much information as the w2v vectors that were used to predict them.

We use a feedforward network with two hidden layers of respectively 2000 and 1500

units, batch size 64, learning rate 0.02 and we train it with backpropagation for 50 epochs,
evaluating it every 10 epochs over a validation set made of 25% of the elements.

The model achieved a MSE of 0.00416 and was used to estimate vectors for 2101 tags
that exclusively appear in the w2v dictionary.

We call the resulting dictionary synthwnet.

5.2 Metrics

We report per-class and per-image mAP, prec@3, rec@3 as defined in section 2.3.1.
Notice that prec@k, rec@k make the assumption a fixed number k of predicted labels is

relevant for every image.

63



prec@3 rec@3
Per-label 60.68±1.32 68.52±0.35

Per-image 92.09±0.10 66.83±0.12

Table 5.1: Upper bounds for our dataset [JBFF15]

Therefore, if the number of relevant labels is not constant k in the ground truth, it is
impossible to achieve precision (resp. recall) of 1, if there are images with less (resp. more)
than k relevant labels.

This is the case with our dataset: the upper bounds for k = 3 on our dataset are shown
in table 5.1.

The theoretical upper bound for mAPimg and mAPlabel is 1.0, but we have strong reason
to doubt that it can be achieved in practice, due to a certain randomness in the tags intro-
duced by the individual leanings of the humans who provided ground truth for our dataset
(see again the comments to figure 4.3).

5.3 Results

Full results are summarized in table 5.2, table 5.3, table 5.4.
We choose to focus our attention, for the most part, on mean mAPlabel and mAPimg, since

they summarize separate precision and recall metrics.
Firstly, we note that mAPlabel is the metric that is affected the most in general, whereas

mAPimg remains more stationary.
This is made evident in figure 5.1.

5.3.1 Neural architectures

Baseline: Visual only

We report the performance of the visual-only classifier separately, in table 5.5.

Visual architectures: LTN vs RTN

The performance for the LTN and RTN architectures, with or without π other than id used
during neighbourhood generation, is plotted against neighbourhood size in figure 5.3.

For the same neighbourhoods, RTN leads to an improvement mAPlabel of around 0.7 to
1.2 percentage points over LTN, in exchange for a drop of 0.2 to 0.4 percentage points in
mAPimg.

More interestingly, the gap between π = id and w2v is larger for RTN at low values of m.
Notice how RTN with w2v embeddings and a 3x6 neighbourhood outperforms “vanilla”

LTN with a 6x12 neighbourhood in terms of mAPlabel, with negligible impact on mAPimg.
The performance of RTN begins to decline faster than LTN with π = wnet, and is particu-

larly bad with synthwnet.
This leads to hypothesize that RTN is particularly sensitive to the quality of neighbour-

hoods it is trained on.
All models improve monotonically with m.

64



ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id 48.05±0.16 78.34±0.19 42.11±0.82 44.24±1.28 72.74±0.22 52.33±0.19

ltn w2v 48.52±0.21 78.50±0.16 42.29±1.12 44.79±0.98 72.89±0.15 52.44±0.13

ltn wnet 49.32±0.19 ? 78.66±0.12 42.76±1.13 45.42±1.02 73.10±0.12 52.60±0.12

ltn synth 48.31±0.23 78.30±0.16 41.96±0.89 44.99±1.05 72.72±0.13 52.33±0.16

rtn id 48.78±0.26 77.92±0.26 44.38±1.41 46.39±1.64 72.45±0.21 52.04±0.25

rtn w2v 50.26±0.27 78.23±0.14 45.93±1.56 46.93±2.06 72.69±0.13 52.20±0.15

rtn wnet ? 50.58±0.30 78.40±0.24 46.15±2.05 47.30±2.69 72.92±0.18 52.35±0.25

rtn synth 46.97±0.24 77.85±0.21 41.76±1.29 44.91±1.11 72.27±0.18 52.02±0.19

ltn-vec id 51.60±0.08 80.47±0.13 43.88±0.93 47.33±1.10 74.76±0.13 53.79±0.14

ltn-allvecs id 53.52±0.06 80.55±0.22 46.01±1.50 47.46±1.57 74.86±0.16 53.81±0.18

lzip id id 61.03±0.23 82.85±0.18 53.78±1.56 51.09±1.95 77.13±0.06 55.28±0.15

lzip w2v id 61.55±0.34 82.85±0.26 54.86±2.35 50.85±3.29 77.18±0.20 55.25±0.23

lzip w2v w2v 62.66±0.29 82.90±0.28 56.53±2.15 51.05±2.86 77.26±0.24 55.25±0.25

lzip id w2v 62.66±0.29 82.90±0.28 56.53±2.15 51.05±2.86 77.26±0.24 55.25±0.25

ltwin id id 56.07±0.17 82.51±0.10 47.88±1.20 49.07±1.47 76.80±0.12 55.15±0.10

ltwin id w2v 63.55±0.27 ? 83.83±0.08 53.99±1.15 52.74±1.37 78.17±0.05 55.87±0.13

ltwin w2v id 56.74±0.24 82.87±0.11 48.18±1.19 50.08±1.27 77.19±0.12 55.40±0.16

ltwin w2v w2v ? 63.69±0.20 83.82±0.10 54.36±1.25 52.67±1.10 78.17±0.05 55.88±0.17

ltwin id wnet 52.70±0.23 80.88±0.13 45.80±1.13 46.86±1.58 75.25±0.10 54.08±0.14

ltwin wnet id 56.48±0.30 82.65±0.10 47.82±1.25 49.86±1.20 76.98±0.09 55.28±0.11

ltwin wnet wnet 52.94±0.40 80.86±0.11 45.71±1.30 46.90±1.73 75.23±0.10 54.06±0.13

ltwin id synth 57.23±0.21 82.24±0.10 48.64±0.96 49.78±0.61 76.64±0.06 54.94±0.12

ltwin synth id 56.34±0.12 82.73±0.08 47.65±1.18 50.19±1.31 77.00±0.09 55.30±0.12

ltwin synth synth 57.17±0.30 82.19±0.11 48.66±1.39 49.91±1.30 76.58±0.11 54.90±0.15

ltwin-rnn id id 55.05±0.11 82.29±0.10 47.22±1.60 48.60±2.24 76.56±0.11 55.00±0.14

ltwin-2rnn id id 60.38±0.32 80.25±2.56 50.47±3.63 50.05±5.30 75.04±2.29 53.54±1.80

ltwin-2rnn id w2v 61.75±0.73 82.34±0.31 51.58±1.67 48.97±2.34 76.99±0.25 54.98±0.28

ltwin-2rnn w2v w2v 60.92±0.48 82.37±0.30 53.74±1.36 47.01±1.69 76.86±0.15 54.91±0.19

ltwin-2rnn id wnet 60.38±0.75 81.99±0.73 50.98±1.63 48.44±2.40 76.55±0.53 54.66±0.58

Table 5.2: Summary of results for neighbourhood size (m,M) = (3, 6)

65



ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id 50.20±0.21 79.02±0.12 43.71±1.02 46.23±1.35 73.45±0.08 52.82±0.13

ltn w2v 51.44±0.19 ? 79.45±0.11 44.47±1.38 46.63±1.74 73.91±0.09 53.10±0.15

ltn wnet 51.14±0.23 79.35±0.14 44.53±1.29 46.57±1.12 73.80±0.10 53.04±0.15

ltn synth 50.15±0.24 78.88±0.17 43.58±1.36 45.85±1.59 73.35±0.15 52.70±0.15

rtn id 51.79±0.19 78.70±0.32 46.13±2.05 48.84±3.02 73.18±0.21 52.57±0.29

rtn w2v ? 53.55±0.37 79.13±0.13 48.13±2.41 49.50±2.78 73.60±0.12 52.79±0.18

rtn wnet 52.61±0.22 79.00±0.37 47.21±2.19 49.18±2.84 73.52±0.22 52.79±0.33

rtn synth 48.29±0.24 78.07±0.41 42.72±1.58 45.65±1.63 72.54±0.33 52.16±0.30

ltn-vec id 52.63±0.26 80.75±0.18 44.36±1.08 47.98±1.48 75.08±0.16 54.00±0.14

ltn-allvecs id 54.82±0.08 80.93±0.21 46.90±1.34 47.89±1.72 75.28±0.13 54.07±0.17

lzip id id 61.40±0.25 82.56±0.17 54.84±2.31 51.03±2.82 76.86±0.14 55.05±0.17

lzip w2v id 62.12±0.53 82.90±0.31 55.23±1.51 51.16±1.99 77.28±0.26 55.31±0.28

lzip w2v w2v 62.33±0.16 82.91±0.18 54.78±2.12 50.65±1.90 77.34±0.13 55.29±0.21

lzip id w2v 62.33±0.16 82.91±0.18 54.78±2.12 50.65±1.90 77.34±0.13 55.29±0.21

ltwin id id 56.16±0.26 82.53±0.14 47.71±1.41 49.31±1.20 76.86±0.13 55.16±0.14

ltwin id w2v ? 63.38±0.31 ? 83.87±0.09 54.15±1.30 52.10±1.51 78.17±0.08 55.86±0.09

ltwin w2v id 57.09±0.14 82.97±0.11 48.36±1.24 50.02±1.25 77.25±0.13 55.43±0.13

ltwin w2v w2v 63.34±0.42 83.77±0.14 54.57±1.44 52.33±1.42 78.13±0.09 55.84±0.19

ltwin id wnet 53.22±0.19 81.11±0.08 46.09±1.55 46.69±1.68 75.45±0.10 54.20±0.12

ltwin wnet id 56.54±0.09 82.69±0.10 47.88±0.93 50.32±1.26 76.93±0.09 55.25±0.14

ltwin wnet wnet 53.41±0.20 80.97±0.15 46.21±1.06 48.51±1.03 75.29±0.13 54.09±0.16

ltwin id synth 57.23±0.10 82.33±0.14 48.74±1.28 49.65±1.06 76.71±0.14 54.99±0.13

ltwin synth id 56.77±0.24 82.78±0.18 47.93±1.69 50.41±1.77 77.09±0.21 55.33±0.17

ltwin synth synth 56.97±0.35 82.19±0.08 48.90±1.49 49.83±1.31 76.61±0.13 54.90±0.15

ltwin-rnn id id 56.28±0.19 82.57±0.16 48.25±1.61 49.39±2.23 76.85±0.17 55.16±0.14

ltwin-2rnn id id 61.65±0.55 81.69±0.60 52.95±2.38 48.75±2.16 76.30±0.42 54.48±0.51

ltwin-2rnn id w2v 62.50±0.54 82.86±0.38 53.17±2.14 50.67±2.85 77.37±0.21 55.24±0.25

ltwin-2rnn w2v w2v 61.87±0.33 82.35±0.30 54.43±2.00 49.44±2.40 76.90±0.09 54.91±0.15

ltwin-2rnn id wnet 61.45±0.22 82.32±0.30 51.54±2.56 49.43±3.35 76.81±0.30 54.89±0.23

Table 5.3: Summary of results for neighbourhood size (m,M) = (6, 12)

66



ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id 53.17±0.12 79.82±0.16 45.67±1.75 47.64±2.18 74.29±0.13 53.34±0.17

ltn w2v 54.54±0.13 ? 80.32±0.16 47.41±1.56 48.57±2.34 74.83±0.14 53.64±0.21

ltn wnet 53.07±0.17 79.95±0.24 46.09±1.86 47.41±1.66 74.35±0.16 53.38±0.19

ltn synth 52.81±0.10 79.46±0.14 45.57±1.93 47.28±2.03 73.95±0.09 53.08±0.13

rtn id 53.97±0.27 79.23±0.27 48.44±3.24 48.75±4.01 73.67±0.25 52.85±0.36

rtn w2v ? 55.36±0.34 79.77±0.27 48.73±2.77 51.21±2.61 74.35±0.29 53.28±0.24

rtn wnet 53.76±0.33 79.45±0.30 47.51±2.38 50.40±2.59 73.87±0.24 53.03±0.26

rtn synth 50.22±0.46 78.49±0.25 43.41±1.77 46.96±2.21 72.92±0.28 52.43±0.22

ltn-vec id 54.86±0.20 81.34±0.15 46.56±1.39 50.10±1.70 75.67±0.17 54.37±0.14

ltn-allvecs id 56.61±0.12 81.28±0.21 48.18±1.48 48.93±2.32 75.66±0.14 54.29±0.19

lzip id id 60.64±0.14 82.42±0.32 52.53±1.67 51.43±2.36 76.65±0.23 54.91±0.26

lzip w2v id 61.24±0.51 82.36±0.41 53.70±2.58 49.86±2.46 76.79±0.26 54.99±0.16

lzip w2v w2v 60.19±0.57 82.32±0.15 52.76±2.09 49.47±2.53 76.78±0.25 54.91±0.10

lzip id w2v 62.33±0.16 82.91±0.18 54.78±2.12 50.65±1.90 77.34±0.13 55.29±0.21

ltwin id id 56.79±0.24 82.64±0.08 48.73±1.47 49.22±1.70 76.93±0.13 55.21±0.14

ltwin id w2v ? 63.13±0.31 ? 83.77±0.06 54.40±1.33 51.86±1.58 78.06±0.05 55.78±0.13

ltwin w2v id 57.73±0.17 83.00±0.06 49.24±1.67 50.73±2.19 77.30±0.13 55.43±0.09

ltwin w2v w2v 63.09±0.16 83.70±0.14 54.80±1.67 51.86±1.63 78.04±0.08 55.76±0.16

ltwin id wnet 55.12±0.25 81.48±0.10 47.50±1.64 48.37±1.69 75.86±0.09 54.43±0.11

ltwin wnet id 56.83±0.24 82.64±0.10 48.48±1.42 50.38±1.66 76.88±0.11 55.18±0.13

ltwin wnet wnet 54.01±0.14 81.06±0.10 46.87±1.41 47.78±1.36 75.40±0.09 54.12±0.18

ltwin id synth 57.58±0.15 82.36±0.09 48.93±1.43 50.65±2.11 76.72±0.12 54.98±0.09

ltwin synth id 57.69±0.39 82.82±0.12 48.80±1.37 50.17±1.30 77.13±0.13 55.34±0.08

ltwin synth synth 57.32±0.16 82.22±0.08 49.35±1.67 50.01±1.62 76.65±0.11 54.93±0.14

ltwin-rnn id id 58.87±0.43 82.95±0.08 50.50±1.42 51.55±1.31 77.19±0.12 55.36±0.12

ltwin-2rnn id id 62.00±1.44 80.52±2.79 51.04±5.28 51.15±3.52 75.37±2.40 53.73±1.97

ltwin-2rnn id w2v 63.04±0.22 83.02±0.34 53.08±1.40 50.33±1.97 77.45±0.25 55.30±0.39

ltwin-2rnn w2v w2v 62.33±0.33 82.72±0.37 54.58±2.70 51.17±3.51 77.07±0.27 55.07±0.26

ltwin-2rnn id wnet 62.35±0.56 82.56±0.26 51.43±2.44 52.11±1.76 77.17±0.13 55.15±0.18

Table 5.4: Summary of results for neighbourhood size (m,M) = (12, 24)

arch mAPlabel mAPimg reclabel preclabel recimg precimg
v-only 45.05± 0.11 76.88± 0.11 42.31± 0.59 43.74± 1.07 71.41± 0.13 51.36± 0.13

Table 5.5: Results for v-only

67



It is worth noting that we are using the RNN for its properties as an universal computer
(see discussion in section 2.2.2) rather than purely to learn a function over sequential data.

In fact, for a sufficiently large dataset, given that the correlation between metadata and
ground truth is rather loose, we’d expect not to see a significance in the ordering of the
nearest m neighbours for practical values of m.

v-o
nly ltn

ltn
+w2

v

rtn
+w2

v

ltn
-al

lve
cs

ltw
in

ltw
in

-2r
nn

ltw
in

+n:w
2
v+f:w

2
v

0.2

0.4

0.6

0.8

1

0
.4
5 0
.4
8

0
.4
9

0
.5 0

.5
4

0
.5
6 0

.6

0
.6
4

0
.7
7

0
.7
8

0
.7
9

0
.7
8

0
.8
1

0
.8
3

0
.8

0
.8
4

mAPlabel
mAPimg

Figure 5.1: Mean mAPlabel and mAPimg of select models showing the spectrum with
(m,M) = (3, 6)

Joint neural architectures: LTN+AllVecs, LTwin,LZIP, LTwin+RNN, LTwin+2RNN

Tag vectors are, on their own, a powerful predictor, as seen in [ML12], and the immediate
availability of raw metadata – rather than implicit knowledge embedded in visual features
from neighbours – can lead to a significant boost in performance.

We do not wish, therefore, to directly compare joint architectures that are directly fed
metadata against purely visual architectures – however, there is a greater disparity in per-
formance between these architectures that we wish to explore than there is between LTN

and RTN.
This is a function of how the available metadata information is used through the ar-

chitecture and the semantic mappings that are applied to the data; this is visualized in
figure 5.2 and in figure 5.5.

Without semantic mapping Consider first what happens in the “naive” case, i.e. with
π = id.

68



ltw
in

+f:w
net

ltn
-al

lve
cs

ltw
in

ltw
in

-2r
nn

lzi
p+f:w

2
v

ltw
in

+n:w
2
v+f:w

2
v

0.2

0.4

0.6

0.8

1
0

.5
3

0
.5
4

0
.5
6 0

.6 0
.6
3

0
.6
4

0
.8
1

0
.8
1

0
.8
3

0
.8 0

.8
3

0
.8
4

mAPlabel
mAPimg

Figure 5.2: Mean mAPlabel and mAPimg of select joint models showing the spectrum with
(m,M) = (3, 6)

As seen in figure 5.4, the simplest and worst-performing model uses LTN+AllVecs as an
architecture and is fed raw binary vectors; it shows quasi-linear improvement wrt neigh-
bourhood size.

LZIP – which uses a RNN – improves uniformly upon it and achieves very good mAPlabel
and mAPimg from the start but tends to exhibit a mild decrease in performance with neigh-
bourhood size, along with LTwin+2RNN.

In turn, LTwin achieves good mAPimg but comparatively poor mAPlabel; LTwin+RNN achieves
roughly comparable performance, but shows linear improvement with m.

LTN+AllVecs is the clear loser, whereas LZIP – at small (m,M) – and LTwin+2RNN are the
best-performing models, with LTwin comfortably in the middle.

Unfortunately, LZIP and LTwin+2RNN are also by far the longest to train by an order
of magnitude (we just need to consider the breadth of the unrolled graph for non-trivial
neighbourhood sizes to persuade ourselves this is the case).

LZIP, LTwin, LTwin+RNN with metadata semantic mappings As seen in figure 5.5 and
figure 5.6, the addition of semantic metadata transforms can give a significant boost to per-
formance, in addition to the benefits wrt robustness of the model to vocabulary changes and
applicability to a different database than the one used for training mentioned in section 4.2.

The performance of all architectures is boosted when they are fed transformations com-
puted from w2v vectors through equation (5.1) instead of plain binary vectors – recall that
our dictionary covers less than 75% of the tag vocabulary, so there might be further room
for improvement.

69



All models tend to saturate around (mAPlabel,mAPimg) = (.63, .83); it is unclear if we’re
hitting an intrinsic performance limit on our dataset (recall again the discussion in sec-
tion 5.2).

This appears to be the case particularly for LZIP, even without any sort of π.
It may be the case that the simpler LTwin can match the performance of the more com-

plex models once provided with w2v mappings.
ltwin+f:w2v performs as well as ltwin+n:w2v+f:w2v, or even better; the same goes for

its LZIP siblings (by a considerably minor margin).
We speculate that the ability of the network to learn to take maximal advantage of

semantic embeddings overshadows the effect of their use in neighbourhood generation and
using w2v vectors in the neighbourhood generation process might therefore be unnecessary.

lzip+f:w2v, ltwin+f:w2v emerge as the superior models.

With wnet and synthwnet The results of wnet and synthwnet are compared in figure 5.7.
As expected, wnet results in poor performance.
Notice also how ltwin+f:wnet is particularly sensitive to neighbourhood size.
It appears that using the synthwnet dictionary leads to an uniform improvement for

LTwin, which is particularly evident when the transformed metadata is fed to the network
instead of raw binary vectors.

The improvement is marginal or nil for LTN, RTN, suggesting that the additional infor-
mation is not sufficient to yield better-quality neighbourhoods.

Nevertheless, this suggests that this form of transfer learning can be effective, partic-
ularly when using joint models where we have two dictionaries with a large intersection
between each other but a small and non-overlapping intersection between each and the tag
vocabulary.

70



4 6 8 10 12

0.46

0.48

0.5

0.52

0.54

0.56 ltn
ltn+w2v
ltn+wnet

rtn
rtn+w2v
rtn+wnet

v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.77

0.78

0.79

0.8

ltn
ltn+w2v
ltn+wnet

rtn
rtn+w2v
rtn+wnet

v-only

(b) Mean mAPimg vs m

Figure 5.3: Mean mAPimg and mAPlabel vs m for visual neural architectures

71



4 6 8 10 12

0.45

0.5

0.55

0.6

ltn-allvecs
ltwin

ltwin-2rnn
ltwin-rnn

lzip
v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.78

0.8

0.82

ltn-allvecs
ltwin

ltwin-2rnn
ltwin-rnn

lzip
v-only

(b) Mean mAPimg vs m

Figure 5.4: Mean mAPimg and mAPlabel vs m for select joint models under with π = id

72



4 6 8 10 12

0.45

0.5

0.55

0.6

0.65 ltwin
ltwin+f:w2v
ltwin+n:w2v
ltwin-2rnn

ltwin-2rnn+f:w2v
v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.78

0.8

0.82

0.84 ltwin
ltwin+f:w2v
ltwin+n:w2v
ltwin-2rnn

ltwin-2rnn+f:w2v
v-only

(b) Mean mAPimg vs m

Figure 5.5: Mean mAPimg and mAPlabel vs m for select joint models, various choices of π

73



4 6 8 10 12

0.78

0.8

0.82

lzip
lzip+f:w2v
lzip+n:w2v

lzip+n:w2v+f:w2v
v-only

(a) Mean mAPimg vs m

4 6 8 10 12

0.45

0.5

0.55

0.6

lzip
lzip+f:w2v
lzip+n:w2v

lzip+n:w2v+f:w2v
v-only

(b) Mean mAPlabel vs m

Figure 5.6: Mean mAPimg and mAPlabel vs m for LZIP. Note the relative indifference to π as
opposed to figure 5.5

74



4 6 8 10 12

0.45

0.5

0.55

ltwin+f:synth-wnet
ltwin+f:wnet

ltwin+n:synth-wnet
ltwin+n:synth-wnet+f:synth-wnet

ltwin+n:wnet
ltwin+n:wnet+f:wnet

v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.78

0.8

0.82

ltwin+f:synth-wnet
ltwin+f:wnet

ltwin+n:synth-wnet
ltwin+n:synth-wnet+f:synth-wnet

ltwin+n:wnet
ltwin+n:wnet+f:wnet

v-only

(b) Mean mAPimg vs m

Figure 5.7: Mean mAPlabel and mAPimg of LTwin with π = wnet and π = synthwnet

75



ltn

ltn
+w2

v

ltn
+wnet

ltn
+sy

nth
-w

net rtn

rtn
+w2

v

rtn
+wnet

rtn
+sy

nth
-w

net
0.2

0.4

0.6

0.8

1
0

.4
8

0
.4
9

0
.4
9

0
.4
8

0
.4
9

0
.5

0
.5
1

0
.4
7

0
.7
8

0
.7
9

0
.7
9

0
.7
8

0
.7
8

0
.7
8

0
.7
8

0
.7
8

(a) with neighbourhood size (m,M) = (3, 6)

ltn

ltn
+w2

v

ltn
+wnet

ltn
+sy

nth
-w

net rtn

rtn
+w2

v

rtn
+wnet

rtn
+sy

nth
-w

net
0.2

0.4

0.6

0.8

1

0
.5 0

.5
1

0
.5
1

0
.5 0

.5
2

0
.5
4

0
.5
3

0
.4
8

0
.7
9

0
.7
9

0
.7
9

0
.7
9

0
.7
9

0
.7
9

0
.7
9

0
.7
8

(b) with neighbourhood size (m,M) = (6, 12)

ltn

ltn
+w2

v

ltn
+wnet

ltn
+sy

nth
-w

net rtn

rtn
+w2

v

rtn
+wnet

rtn
+sy

nth
-w

net
0.2

0.4

0.6

0.8

1

0
.5
3

0
.5
5

0
.5
3

0
.5
3

0
.5
4

0
.5
5

0
.5
4

0
.5

0
.8 0
.8

0
.8

0
.7
9

0
.7
9

0
.8

0
.7
9

0
.7
8

mAPlabel
mAPimg

(c) with neighbourhood size (m,M) = (12, 24)

Figure 5.8: Mean mAPlabel and mAPimg of LTN, RTN at various neighbourhood sizes and
metadata mappings

76



Chapter 6

Variations upon the experimental
protocol and future work

Results given in section 5.3 were obtained by matching the protocol and implementation of
[JBFF15], for ease of comparison with the baseline.

This in particular implies using the entire dataset as a source of neighbours both at train
and test time.

However, this does not measure how truly robust a model is to changes in the under-
lying database, i.e. it doesn’t measure its potential to be deployed on a different database
than the one it was trained on.

This is because there is a possibility, which neighbourhood randomization is intended to avert,
that the models overadapts to contingent features of the neighbours and fails to generalize
to the visual features of entirely new neighbours.

Existing literature (see e.g. the review in [ZWZ+
19]) uses frequently a protocol in which

the dataset is split in two or three subsets closed under neighbours, with proportions approx-
imating the classic 60:20:20 ratio, depicted in figure 6.7.

However, we do not believe that this is an entirely “unbiased” protocol: at training time
the neighbours are drawn from a significantly larger subset. We expect the average distance
to be greater in the smaller subset1

Intuitively, this can mean noisier neighbourhoods at test time, particularly if the test
and validation sets are small.

The intuition is given in figure 6.1.
We ran some experiments on a subsection of models with this setup, extracting neigh-

bours at training, validation and test time from the same 110000, 40000 and 40253 images
that make up the respective set.

This means that now the neighbours are extracted from pools of cardinality respectively
less than 1

2 , 16 and 1
6 times the size of the whole dataset.

The results are given in table 6.3, table 6.1, table 6.2 and visualized in figure 6.5, fig-
ure 6.3 figure 6.4.

We see a partly different picture: while the proportions between our models are roughly
the same at (m,M) = (3, 6), it is the case that as neighbourhood size increases, performance

1We believe a proof can be worked out with a graph-theoretic approach, by thinking of removing an image
from the pool as removing a vertex and replacing it with edges between its neighbours, then using the results
of [BDD+

12] [Cab17]

77



(a) A black ball amid white
and red balls; red subset is
uniformly sampled

(b) 3NN (dotted) and 6NN
(dashed) of black ball, chosen
from white subset

(c) 3NN (dotted) and 6NN
(dashed) of black ball, chosen
from red subset

Figure 6.1: The expected distance of nearest neighbours is larger if chosen from a strictly
smaller, uniformly sampled subset of the same set

gets worse, even significantly in the case of LTN.
At (m,M) = (3, 6) LTN performs only mildly better than the visual-only classifier.
RTN is worse on average but shows less variation – recall that unlike LTN it is able to

distinguish the different neighbours and may easily learn to “distrust” the farther ones,
making the results consistent with the hypothesis of noisy neighbourhoods.

This is also the case for LZIP, leading to the conjecture that RNN-based architectures
need a larger and diverse neighbour pool to fully realize their potential.

We believe, however, that the truly “unbiased” way to carry out this sort of experiments
is to extract the neighbours from disjoint sets having the same cardinality.

We experimented with this setup and divided our dataset into subsets of size 80533, 80533, 80534
– note that our pool of training neighbours has gotten even smaller!

Some results with this setup are given in table 6.6, table 6.4, table 6.5.
We witness once again the same general relationships between models at (m,M) = (3, 6)

– LTN goes back to performing as expected at (m,M) = (3, 6) – but again we see performance
degradation as neighbourhoods expand.

We can hypotesize several possible causes to explain the behaviour we see:

1. Even with a pool of 80k images to extract neighbours from at test time, neighbour-
hoods could be too noisy

2. A pool of 80k images to extract neighbours from at training time might be insufficient

3. When using neighbours from the whole dataset at all times there might be some
degree of co-adaptation inflating the results.

4. The asymmetry in the size of neighbour pools in the setup of figure 6.7 causes perfor-
mance degradation in itself.

These conjectures are non-exclusive.

78



4 6 8 10 12

0.44

0.45

0.46

0.47 ltn
ltn+w2v

rtn
rtn+w2v
v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.76

0.77

0.77

ltn
ltn+w2v

rtn
rtn+w2v
v-only

(b) Mean mAPimg vs m

Figure 6.2: Mean mAPimg and mAPlabel vs m for visual neural architectures using test,
training and validation sets closed under neighbourhood (figure 6.7)

We are not able to prove or disprove them, as at this time we are unable to run extensive
experiments with more than 240k total images, however split.

Particularly, the third hypothesis could be disproved with 240K further unique images
to build test neighbourhoods from.

Further studies need to be done to characterize the robustness of these models to
changes in metadata vocabulary or noisiness, starting with studying their performance as
a function of the size of the neighbour pools at training and test time and the IoU between
them, particularly to ascertain where lays the “cutoff point”, as a function of neighbourhood
pool size, after which larger neighbourhoods become detrimental due to noise.

Note, however, that there is no particular reason to extract neighbours from NUS-Wide
or any other manually annotated dataset, since the ground truth is never used: very large
Flickr datasets such as [TES+

16] make excellent candidates. This is depicted in figure 6.8.

79



ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id ? 46.73±0.21 ? 77.68±0.20 41.24±1.01 43.27±1.68 72.08±0.20 51.89±0.18

ltn w2v 46.59±0.10 77.60±0.14 41.01±1.04 43.46±1.06 72.06±0.13 51.86±0.14

rtn id 45.16±0.22 76.99±0.23 40.54±1.69 44.24±1.81 71.51±0.15 51.48±0.17

rtn w2v 44.88±0.22 76.86±0.23 39.98±1.86 43.91±1.47 71.26±0.18 51.29±0.18

ltn-vec id 50.97±0.39 80.19±0.14 43.42±1.19 46.65±0.81 74.50±0.17 53.62±0.18

ltn-allvecs id 51.86±0.27 79.99±0.17 44.93±1.39 46.13±1.38 74.38±0.15 53.49±0.16

lzip id id 59.13±0.32 82.44±0.27 52.28±1.54 48.65±2.49 76.72±0.21 55.01±0.22

lzip id w2v 61.47±0.32 82.59±0.27 53.86±1.51 51.05±2.12 76.90±0.27 55.02±0.22

ltwin id id 55.39±0.31 82.32±0.15 47.55±1.37 48.42±1.00 76.64±0.15 55.05±0.13

ltwin id w2v 63.17±0.33 ? 83.77±0.11 54.10±1.23 52.62±1.28 78.09±0.08 55.81±0.14

ltwin w2v id 55.84±0.43 82.63±0.11 47.60±1.22 49.67±0.71 76.91±0.16 55.23±0.12

ltwin w2v w2v ? 63.24±0.19 83.71±0.11 54.61±1.37 51.52±1.41 78.05±0.12 55.77±0.18

Table 6.1: Summary of results for neighbourhood size (m,M) = (3, 6) using test, training
and validation sets closed under neighbourhood (figure 6.7)

ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id ? 45.58±0.13 ? 77.27±0.16 40.13±1.22 44.24±1.12 71.67±0.10 51.58±0.14

ltn w2v 45.06±0.14 77.02±0.20 39.55±1.40 43.43±1.63 71.52±0.16 51.46±0.18

rtn id 44.55±0.18 76.72±0.32 39.25±2.19 44.90±2.23 71.13±0.22 51.20±0.24

rtn w2v 44.10±0.29 76.44±0.33 38.21±1.83 44.16±2.49 70.88±0.25 51.01±0.28

ltn-vec id 49.73±0.24 79.86±0.12 43.17±1.44 45.60±2.01 74.16±0.10 53.38±0.14

ltn-allvecs id 50.81±0.09 79.59±0.23 44.08±1.78 45.29±1.85 74.02±0.19 53.21±0.20

lzip id id 59.37±0.22 82.19±0.30 51.83±1.48 50.15±1.52 76.52±0.19 54.89±0.23

lzip id w2v 60.61±0.20 82.44±0.25 53.39±2.19 50.58±3.73 76.78±0.28 54.93±0.22

ltwin id id 53.58±0.16 81.90±0.13 46.34±1.31 47.83±1.17 76.16±0.12 54.72±0.14

ltwin id w2v ? 62.71±0.38 83.61±0.18 54.11±1.33 51.64±2.02 77.92±0.14 55.69±0.19

ltwin w2v id 54.12±0.27 82.21±0.13 46.17±1.41 47.92±1.66 76.48±0.15 54.92±0.18

ltwin w2v w2v 62.58±0.34 ? 83.64±0.15 54.46±1.37 50.84±1.87 77.96±0.09 55.70±0.18

Table 6.2: Summary of results for neighbourhood size (m,M) = (6, 12) using test, training
and validation sets closed under neighbourhood (figure 6.7)

80



ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id 44.28±0.11 ? 76.78±0.16 39.36±2.02 42.77±3.00 71.22±0.12 51.21±0.13

ltn w2v 43.58±0.26 76.33±0.25 37.81±1.57 42.93±1.64 70.75±0.20 50.90±0.19

rtn id ? 44.60±0.23 76.48±0.33 38.36±1.81 44.70±2.20 70.88±0.22 51.04±0.29

rtn w2v 44.00±0.34 76.26±0.32 36.90±2.26 45.51±2.71 70.76±0.21 50.95±0.18

ltn-vec id 48.40±0.22 79.35±0.13 42.01±1.78 46.12±1.82 73.70±0.17 53.04±0.13

ltn-allvecs id 49.66±0.21 79.23±0.22 43.09±1.47 45.71±1.57 73.63±0.14 52.94±0.16

lzip id id 58.31±0.24 81.18±0.36 50.70±3.20 50.45±2.59 75.63±0.35 54.00±0.32

lzip id w2v 59.45±0.58 81.99±0.52 52.44±1.45 48.61±2.71 76.53±0.21 54.79±0.27

ltwin id id 51.00±0.20 81.25±0.10 44.55±1.26 45.90±1.38 75.48±0.14 54.29±0.15

ltwin id w2v 61.88±0.23 83.41±0.15 53.73±0.98 50.65±1.67 77.80±0.05 55.59±0.16

ltwin w2v id 51.37±0.30 81.54±0.10 43.98±1.92 47.12±2.16 75.80±0.07 54.46±0.12

ltwin w2v w2v 61.91±0.24 ? 83.45±0.14 54.27±1.70 50.28±2.04 77.83±0.07 55.58±0.16

ltwin-2rnn id id 61.65±0.79 80.83±2.30 50.52±3.75 52.28±2.68 75.22±2.76 53.56±2.27

ltwin-2rnn id w2v ? 61.99±0.70 82.83±0.38 51.75±3.09 50.12±2.55 77.42±0.23 55.35±0.22

Table 6.3: Summary of results for neighbourhood size (m,M) = (12, 24) using test, training
and validation sets closed under neighbourhood (figure 6.7)

ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id ? 46.69±0.24 ? 77.68±0.18 41.20±1.09 43.91±1.85 72.09±0.21 51.89±0.17

ltn w2v 45.97±1.20 77.22±0.72 41.09±1.27 42.97±1.60 71.69±0.73 51.58±0.57

rtn id 45.05±0.21 77.07±0.26 40.85±1.80 43.71±1.96 71.48±0.18 51.45±0.20

rtn w2v 44.18±1.34 76.43±0.95 40.29±1.59 43.52±1.50 70.93±1.06 51.00±0.80

ltn-allvecs id 51.67±0.19 79.96±0.21 44.45±1.47 46.20±1.26 74.29±0.12 53.43±0.16

lzip id id 59.17±0.30 82.37±0.23 51.69±2.57 49.75±3.39 76.66±0.17 54.96±0.23

lzip id w2v 61.23±0.21 82.52±0.20 54.79±2.70 51.13±2.93 76.85±0.13 54.97±0.20

ltwin id id 55.55±0.24 82.31±0.17 47.49±1.30 48.44±2.01 76.62±0.15 55.01±0.13

ltwin id w2v ? 63.44±0.29 ? 83.74±0.18 54.28±1.24 52.31±1.01 78.08±0.13 55.79±0.18

ltwin-2rnn id id 60.32±0.74 81.61±0.44 52.66±1.83 47.26±3.25 76.24±0.43 54.54±0.34

ltwin-2rnn id w2v 57.36±6.59 80.55±3.05 49.50±3.93 45.30±4.88 75.29±2.95 53.83±2.10

Table 6.4: Summary of results for neighbourhood size (m,M) = (3, 6) using neighbours
extracted from disjoint pools of 13 the whole dataset at training, test and validation time

81



ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id ? 45.52±0.14 ? 77.24±0.25 40.92±1.58 42.98±1.23 71.73±0.21 51.60±0.20

ltn w2v 44.84±0.86 76.71±0.74 39.71±1.70 42.29±0.76 71.14±0.75 51.19±0.58

rtn id 44.58±0.27 76.74±0.30 39.59±2.17 43.81±2.41 71.19±0.18 51.24±0.27

rtn w2v 43.41±1.34 76.04±1.02 38.68±1.42 43.30±1.40 70.49±1.03 50.70±0.81

ltn-allvecs id 50.84±0.21 79.64±0.22 43.94±1.70 45.60±1.69 74.02±0.16 53.24±0.19

lzip id id 59.44±0.44 81.92±0.45 52.72±1.99 50.25±3.32 76.33±0.35 54.61±0.34

lzip id w2v 60.73±0.39 82.33±0.32 54.15±1.70 49.79±1.43 76.73±0.16 54.89±0.21

ltwin id id 53.50±0.16 81.86±0.10 46.43±1.64 47.65±1.54 76.13±0.15 54.70±0.14

ltwin id w2v ? 62.70±0.29 ? 83.64±0.12 53.98±1.38 51.78±1.19 77.99±0.11 55.73±0.15

ltwin-2rnn id id 60.41±0.53 81.80±0.23 51.17±1.95 49.64±0.88 76.40±0.16 54.66±0.17

ltwin-2rnn id w2v 58.89±5.78 81.22±2.87 49.82±5.16 47.29±3.90 75.81±2.87 54.15±2.06

Table 6.5: Summary of results for neighbourhood size (m,M) = (6, 12) using neighbours
extracted from disjoint pools of 13 the whole dataset at training, test and validation time

ar
ch

neig
hbours

fee
d mAPlabel mAPimg reclabel preclabel recimg precimg

ltn id 44.18±0.25 76.65±0.22 39.15±2.17 42.40±2.66 71.11±0.16 51.17±0.14

ltn w2v 43.29±0.66 76.03±0.69 37.77±1.38 42.47±1.04 70.48±0.58 50.71±0.48

rtn id ? 44.72±0.20 ? 76.66±0.28 38.37±2.38 44.98±3.06 71.09±0.21 51.18±0.19

rtn w2v 43.26±1.19 75.92±0.99 37.13±1.93 44.35±1.82 70.38±0.97 50.64±0.71

ltn-allvecs id 49.68±0.17 79.16±0.17 42.92±1.84 45.35±2.16 73.57±0.13 52.89±0.13

lzip id id 58.38±0.60 81.18±1.74 49.10±2.36 53.14±3.84 75.35±2.05 53.93±1.56

lzip id w2v 59.07±0.33 81.96±0.40 52.42±2.07 48.10±3.88 76.41±0.28 54.64±0.33

ltwin id id 50.92±0.18 81.26±0.12 44.38±1.66 46.33±2.02 75.53±0.12 54.28±0.13

ltwin id w2v ? 61.75±0.20 ? 83.35±0.15 53.97±1.50 50.36±2.24 77.71±0.08 55.53±0.18

ltwin-2rnn id id 61.10±0.79 81.78±0.50 51.61±1.65 49.25±3.17 76.50±0.37 54.63±0.40

ltwin-2rnn id w2v 59.37±4.31 81.42±2.45 50.40±4.03 46.68±3.48 76.16±2.19 54.41±1.55

Table 6.6: Summary of results for neighbourhood size (m,M) = (12, 24) using neighbours
extracted from disjoint pools of 13 the whole dataset at training, test and validation time

82



4 6 8 10 12

0.45

0.5

0.55

0.6 ltn-allvecs
ltwin
lzip

v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.78

0.8

0.82
ltn-allvecs

ltwin
lzip

v-only

(b) Mean mAPimg vs m

Figure 6.3: Mean mAPimg and mAPlabel vs m for select joint models under with π = id using
test, training and validation sets closed under neighbourhood (figure 6.7)

83



4 6 8 10 12

0.45

0.5

0.55

0.6

ltwin
ltwin+f:w2v

lzip
lzip+f:w2v

v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.78

0.8

0.82

0.84 ltwin
ltwin+f:w2v

lzip
lzip+f:w2v

v-only

(b) Mean mAPimg vs m

Figure 6.4: Mean mAPimg and mAPlabel vs m for select joint models, various choices of π
using test, training and validation sets closed under neighbourhood (figure 6.7)

84



4 6 8 10 12
0.43

0.44

0.45

0.46

0.47
ltn

ltn+w2v
rtn

rtn+w2v
v-only

(a) Mean mAPlabel vs m

4 6 8 10 12

0.76

0.77

0.77

0.78

ltn
ltn+w2v

rtn
rtn+w2v
v-only

(b) Mean mAPimg vs m

Figure 6.5: Mean mAPimg and mAPlabel vs m for visual neural architectures using neigh-
bours extracted from disjoint pools of 13 the whole dataset at training, test and validation
time

85



manually
annotated

dataset

set A

set B

test
neighbors

test
images

training
neighbors

training
images

test set

training set

Figure 6.6: Neighbourhood generation from entire dataset

86



manually
annotated

dataset

set A

set B

test
neighbors

test
instances

training
neighbors

training
instances

test set

training set

Figure 6.7: Training, test and validation sets closed under neighbourhood

87



annotated
dataset

set A

set B

test
neighbors

test
images

training
neighbors

training
images

test set

training set

large dataset of
images w/metadata

Figure 6.8: Proposed procedure for neighbourhood generation

88



Chapter 7

Conclusions

We have seen that the baseline of the visual model based on metadata neighbours of
[JBFF15] can be improved within the same framework with semantic mappings and ar-
chitectural modifications involving RNNs.

Moreover, we have described a framework that extends upon that of [JBFF15] and char-
acterized the performance of variety of joint models built around it: we have seen that the
performance of different neural architectures exhibits significant variability.

We have seen that semantic mappings can be highly effective in improving performance,
besides achieving robustness to changes in metadata vocabulary and quality of neighbor-
hoods.

One interesting finding is that the effect of using semantic mappings in neighbourhood
generation seems to be overshadowed by their effect on the data input into the neural
architecture, suggesting that it might not always be worth the effort to incorporate them in
the NN mechanism.

We have also shown that imputing semantic dictionaries thorugh a knowledge transfer
approach can be helpful when the intersection between an existing semantic dictionary and
the tag vocabulary is small; we believe this can be further investigated as a useful technique
to improve the performance of classifiers that involve such mappings.

We have seen that RNN-based models can perform very well, although the results of
chapter 6 suggest that their effect with excessively small or noisy neighbour pools might be
detrimental and needs further investigation to be characterized precisely.

We have seen that, in general, there is far potential to attack “hard” classes through
metadata than there is to improve per-image performance; this might make the models
presented here more relevant in those contexts, particularly when dealing with imbalanced
datasets and when there is a high cost for neglecting some classes.

Algorithmic bias, which has recently become a matter of concern in the public eye, is
an immediate consequence of the above-mentioned issues: we expect its relevance not to
decline anytime soon.

Finally we have proposed a new, unbiased experimental protocol to carry out exper-
iments with this sort of models and to measure the robustness of models to changing
metadata vocabulary and neighborhood quality.

89



This page intentionally left blank.



Acknowledgements

Very special thanks go to my supervisor, Lamberto Ballan, who went above and beyond the
call of duty to remove obstacles in my path, while letting me walk it on my own two feet.

The leaves and trees of chapter 1 are from my mother’s sketchbook; she also provided
support and fine food.

A huge thank you also goes to my friends and occasional proofreaders, particularly
Nicola, Pippo, Theo, Alessandro and Elena.

Finally, a shout out goes to the whole of the Visual Intelligence and Machine Perception
research group at UniPD for the stimulating discussions and interesting ideas I’ve been
exposed to.

91



This page intentionally left blank.



Bibliography

[BDD+
12] R. Bauer, G. D’Angelo, D. Delling, A. Schumm, and D. Wagner. The Short-

cut Problem - Complexity and Algorithms. Journal of Graph Algorithms and
Applications, 16(2):447–481, 2012. doi:10.7155/jgaa.00270.

[Cab17] S. Cabello. Subquadratic Algorithms for the Diameter and the Sum of Pairwise
Distances in Planar Graphs. arXiv:1702.07815 [cs], Feb. 2017. URL http://

arxiv.org/abs/1702.07815. arXiv: 1702.07815.

[cs219] CS231n Convolutional Neural Networks for Visual Recognition, May 2019.
URL http://web.archive.org/web/20190514151219/cs231n.github.io/.

[CTH+
09] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. NUS-

WIDE: a real-world web image database from National University of Sin-
gapore. In Proceeding of the ACM International Conference on Image and Video
Retrieval - CIVR ’09, page 1, Santorini, Fira, Greece, 2009. ACM Press.
doi:10.1145/1646396.1646452.

[CVMG+
14] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[DDS+
09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and Li Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09, 2009.

[DS02] B. DasGupta and G. Schnitger. On the Computational Power of Analog Neural
Networks. In The Handbook of Brain Theory and Neural Networks, page 14. 2002.

[EVGW+
10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The

Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer
Vision, 88(2):303–338, June 2010. doi:10.1007/s11263-009-0275-4.

[FP12] D. Forsyth and J. Ponce. Computer vision: a modern approach. Pearson, Boston,
2nd ed edition, 2012.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[GHF12] Gang Wang, D. Hoiem, and D. Forsyth. Learning Image Similarity from Flickr
Groups Using Fast Kernel Machines. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(11):2177–2188, Nov. 2012. doi:10.1109/TPAMI.2012.29.

93

http://dx.doi.org/10.7155/jgaa.00270
http://arxiv.org/abs/1702.07815
http://arxiv.org/abs/1702.07815
http://web.archive.org/web/20190514151219/cs231n.github.io/
http://dx.doi.org/10.1145/1646396.1646452
http://dx.doi.org/10.1007/s11263-009-0275-4
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/TPAMI.2012.29


[GMVS09] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. TagProp: Discrimi-
native metric learning in nearest neighbor models for image auto-annotation.
In 2009 IEEE 12th International Conference on Computer Vision, pages 309–316,
Kyoto, Sept. 2009. IEEE. doi:10.1109/ICCV.2009.5459266.

[GVS10] M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learn-
ing for image classification. In 2010 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 902–909, San Francisco, CA, USA,
June 2010. IEEE. doi:10.1109/CVPR.2010.5540120.

[Har15] A. W. Harley. An interactive node-link visualization of convolutional neural
networks. In ISVC, pages 867–877, 2015.

[Hin] G. Hinton. Neural Networks for Machine Learning. URL http:

//web.archive.org/web/20161114232611/https://www.coursera.org/

learn/neural-networks.

[Hin86] G. E. Hinton. Distributed representations. Technical report, Carnegie Mellon
University, 1986.

[HZD+
16] H. Hu, G.-T. Zhou, Z. Deng, Z. Liao, and G. Mori. Learning Structured In-

ference Neural Networks with Label Relations. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2960–2968, Las Vegas,
NV, USA, June 2016. IEEE. doi:10.1109/CVPR.2016.323.

[HZRS15] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. arXiv:1502.01852 [cs],
Feb. 2015. URL http://arxiv.org/abs/1502.01852. arXiv: 1502.01852.

[HZRS16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016.

[JBFF15] J. Johnson, L. Ballan, and L. Fei-Fei. Love thy neighbors: Image annotation
by exploiting image metadata. 2015 IEEE International Conference on Computer
Vision (ICCV), pages 4624–4632, 2015.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information process-
ing systems, pages 1097–1105, 2012.

[LBB+
98] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning

applied to document recognition. In Proceedings of the IEEE, volume 86, pages
2278–2324, 1998.

[LBD+
89] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel. Backpropagation applied to handwritten zip code recogni-
tion. Neural computation, 1(4):541–551, 1989.

[Lec89] Y. Lecun. Generalization and network design strategies. In Connectionism in
perspective. Elsevier, 1989.

94

http://dx.doi.org/10.1109/ICCV.2009.5459266
http://dx.doi.org/10.1109/CVPR.2010.5540120
http://web.archive.org/web/20161114232611/https://www.coursera.org/learn/neural-networks
http://web.archive.org/web/20161114232611/https://www.coursera.org/learn/neural-networks
http://web.archive.org/web/20161114232611/https://www.coursera.org/learn/neural-networks
http://dx.doi.org/10.1109/CVPR.2016.323
http://arxiv.org/abs/1502.01852


[LUB+
16] X. Li, T. Uricchio, L. Ballan, M. Bertini, C. G. M. Snoek, and A. D. Bimbo.

Socializing the Semantic Gap: A Comparative Survey on Image Tag Assign-
ment, Refinement, and Retrieval. ACM Computing Surveys, 49(1):1–39, June
2016. doi:10.1145/2906152.

[LXH+
17] F. Liu, T. Xiang, T. M. Hospedales, W. Yang, and C. Sun. Semantic Regular-

isation for Recurrent Image Annotation. pages 4160–4168. IEEE, July 2017.
doi:10.1109/CVPR.2017.443.

[MCCD13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word
Representations in Vector Space. arXiv:1301.3781 [cs], Jan. 2013. URL http:

//arxiv.org/abs/1301.3781. arXiv: 1301.3781.

[Mil95] G. A. Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[Mit97] T. Mitchell. Machine Learning. McGraw-Hill international editions - computer
science series. McGraw-Hill Education, 1997. URL https://books.google.

it/books?id=xOGAngEACAAJ.

[ML12] J. McAuley and J. Leskovec. Image Labeling on a Network: Using Social-
Network Metadata for Image Classification. In D. Hutchison, T. Kanade,
J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,
G. Weikum, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid,
editors, Computer Vision – ECCV 2012, volume 7575, pages 828–841. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-33765-9-59.

[MP72] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational
Geometry. Mit Press, 1972. URL https://books.google.it/books?id=

Ow1OAQAAIAAJ.

[MRS08] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA, 2008.

[NG19] NLX-Group. Obtaining word embeddings from a WordNet ontology.
Contribute to nlx-group/WordNetEmbeddings development by creating an
account on GitHub, May 2019. URL https://github.com/nlx-group/

WordNetEmbeddings. original-date: 2018-05-25T10:39:08Z.

[NHH15] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In Proceedings of the IEEE international conference on computer
vision, pages 1520–1528, 2015.

[oed] Context. in The Oxford English Living Dictionary. http://web.archive.org/

web/20190323145341/https://en.oxforddictionaries.com/definition/

context. Accessed: 2019-03-21.

[PMB13] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In International conference on machine learning, pages 1310–
1318, 2013.

95

http://dx.doi.org/10.1145/2906152
http://dx.doi.org/10.1109/CVPR.2017.443
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://books.google.it/books?id=xOGAngEACAAJ
https://books.google.it/books?id=xOGAngEACAAJ
http://dx.doi.org/10.1007/978-3-642-33765-9-59
https://books.google.it/books?id=Ow1OAQAAIAAJ
https://books.google.it/books?id=Ow1OAQAAIAAJ
https://github.com/nlx-group/WordNetEmbeddings
https://github.com/nlx-group/WordNetEmbeddings
http://web.archive.org/web/20190323145341/https://en.oxforddictionaries.com/definition/context
http://web.archive.org/web/20190323145341/https://en.oxforddictionaries.com/definition/context
http://web.archive.org/web/20190323145341/https://en.oxforddictionaries.com/definition/context


[Pow] V. Powell. Image Kernels explained visually. URL http://web.archive.org/

web/20190329125343/http://setosa.io/ev/image-kernels/.

[RN16] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Al-
ways learning. Pearson, 2016. URL https://books.google.it/books?id=

XS9CjwEACAAJ.

[Roj96] R. Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag, Berlin,
Heidelberg, 1996.

[SBRS] C. Saedi, A. Branco, J. A. Rodrigues, and J. Silva. WordNet Embeddings. In
Proceedings of the 3rd Workshop on Representation Learning for NLP, pages 122–
131.

[SHK+
14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-

nov. Dropout: A simple way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL http:

//jmlr.org/papers/v15/srivastava14a.html.

[son19] Example of 2d Convolution, Jan. 2019. URL http://web.archive.org/web/

20190107213933/http://www.songho.ca/dsp/convolution/convolution2d_

example.html.

[SS95] H. T. Siegelmann and E. D. Sontag. On the computational power of neural
nets. Journal of computer and system sciences, 50(1):132–150, 1995.

[SWS+
01] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based

image retrieval at the end of the early. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 22:1349–1380, Jan. 2001. doi:10.1109/34.895972.

[SZ15] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[TES+
16] B. Thomee, B. Elizalde, D. A. Shamma, K. Ni, G. Friedland, D. Poland,

D. Borth, and L.-J. Li. YFCC100m: the new data in multimedia research.
Communications of the ACM, 59(2):64–73, Jan. 2016. doi:10.1145/2812802.

[w2v19] word2vec at Google Code Archive - Long-term storage for Google
Code Project Hosting., May 2019. URL http://web.archive.org/web/

20190501011336/https://code.google.com/archive/p/word2vec/.

[WM97] D. Wolpert and W. Macready. No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr. 1997.
doi:10.1109/4235.585893.

[ZWZ+
19] J. Zhang, Q. Wu, J. Zhang, C. Shen, and J. Lu. Mind your neighbours: Image

annotation with metadata neighbourhood graph co-attention networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR’19), 2019.
URL http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_

Mind_Your_Neighbours_Image_Annotation_With_Metadata_Neighbourhood_

Graph_Co-Attention_CVPR_2019_paper.pdf.

96

http://web.archive.org/web/20190329125343/http://setosa.io/ev/image-kernels/
http://web.archive.org/web/20190329125343/http://setosa.io/ev/image-kernels/
https://books.google.it/books?id=XS9CjwEACAAJ
https://books.google.it/books?id=XS9CjwEACAAJ
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://web.archive.org/web/20190107213933/http://www.songho.ca/dsp/convolution/convolution2d_example.html
http://web.archive.org/web/20190107213933/http://www.songho.ca/dsp/convolution/convolution2d_example.html
http://web.archive.org/web/20190107213933/http://www.songho.ca/dsp/convolution/convolution2d_example.html
http://dx.doi.org/10.1109/34.895972
http://dx.doi.org/10.1145/2812802
http://web.archive.org/web/20190501011336/https://code.google.com/archive/p/word2vec/
http://web.archive.org/web/20190501011336/https://code.google.com/archive/p/word2vec/
http://dx.doi.org/10.1109/4235.585893
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Mind_Your_Neighbours_Image_Annotation_With_Metadata_Neighbourhood_Graph_Co-Attention_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Mind_Your_Neighbours_Image_Annotation_With_Metadata_Neighbourhood_Graph_Co-Attention_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Zhang_Mind_Your_Neighbours_Image_Annotation_With_Metadata_Neighbourhood_Graph_Co-Attention_CVPR_2019_paper.pdf

	Introduction
	Contribution of this thesis
	Organization of this thesis

	Background
	Machine Learning
	Classification problems
	Inductive bias
	Capacity, overfitting, underfitting
	Parametric vs nonparametric models

	Artificial neural networks
	(Deep) feed-forward networks
	Recurrent neural networks
	Regularization techniques for deep neural networks

	Image classification tasks and CNNs
	Metrics for multi-label image classification
	CNNs and Deep Learning
	Transfer learning and pretrained models

	Distributional word representations

	Literature review
	Metadata-based models
	Neighbour-based models
	Semantic models

	Our models
	Neighbourhood generation and size
	Metadata semantic mappings  and distance measures 
	Neural architectures
	Visual architectures
	Joint architectures


	Experiments
	Experimental protocol
	Dataset and pretrained weights
	Semantic mappings and distance measures

	Metrics
	Results
	Neural architectures


	Variations upon the experimental protocol and future work
	Conclusions

